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Abstract

The persistence of a species in a given place not only depends on its intrinsic capacity to consume
and transform resources into offspring, but also on how changing environmental conditions affect
its growth rate. However, the complexity of factors has typically taken us to choose between
understanding and predicting the persistence of species. To tackle this limitation, we propose a
probabilistic approach rooted on the statistical concepts of ensemble theory applied to statistical
mechanics and on the mathematical concepts of structural stability applied to population dynam-
ics models – what we call structural forecasting. We show how this new approach allows us to esti-
mate a probability of persistence for single species in local communities; to understand and
interpret this probability conditional on the information we have concerning a system; and to pro-
vide out-of-sample predictions of species persistence as good as the best experimental approaches
without the need of extensive amounts of data.

Keywords

ecological communities, ensemble theory, experimental tests, nonlinear population dynamics, out-
of-sample predictions, probability, statistical mechanics, structural stability.

Ecology Letters (2020)

INTRODUCTION

One of the long-standing questions in ecology is how can we
know whether an observed species (e.g. bacteria, plant, insect
or mammal species) in a given place (e.g. human host, natural
habitat) will persist across a period of time (Pimm, 1991; Vel-
lend, 2016). Even more simply, we can ask: what is the chance
that a given species will persist? The difficulty in answering
this question resides in knowing the exact equations governing
the dynamics of ecological systems, together with the high
uncertainty regarding the initial conditions, parameter values,
intrinsic randomness, and more importantly, how the chang-
ing external conditions (such as biotic and abiotic factors) will
affect the dynamics (Levins, 1968; Sugihara, 1994; Fukami,
2015; Boettiger, 2018; Cenci and Saavedra, 2018b). This com-
plexity of multidimensional and changing factors has typically
taken both theoretical and empirical studies to choose
between understanding and predicting species persistence
(Petchey et al., 2015; Clark et al., 2020).
Indeed, apart from collecting an enormous amount of data

(which may not be possible to obtain under time and resource
constraints) and building sophisticated learning algorithms
(which may not generalise well to unseen data nor provide
ecological understanding), how to understand and predict the
persistence of species subject to changing environments
remains an open question (Sugihara et al., 2012; Harfoot
et al., 2014; Dietze, 2017; Cenci and Saavedra, 2019). Yet,
having a framework that could unify the problems of under-
standing and predicting can help us to answer not only the
question of what is the probability of persistence of a species,
but also the question of why is this probability small or large.
Notably, answering what and why questions are fundamental
pillars of a science that is both predictive and descriptive

(Poincaré, 1905; Pearl, 2009). Moreover, this unification is of
paramount importance in the face of rapidly changing envi-
ronmental conditions, where understanding and predicting the
presence (or absence) of species in ecological communities can
help us to establish sustainable strategies essential to the
maintenance of biodiversity and human well-being (Stenseth
et al., 2002; Walther, 2010; Dirzo et al., 2014; Lu et al., 2016;
Rohr et al., 2020).
On the one hand, theoretical and empirical work in ecology

has focused on understanding the conditions under which a
species can persist given an environmental context (Yodzis
and Innes, 1992; Case, 2000; Turchin, 2003) It is worth noting
that despite the fact that several ecological studies use the
word prediction (Valdovinos, 2019), these studies are explana-
tory in nature as they do not address out-of-sample problems
explicitly (Shmueli, 2010). Importantly, a large body of work
has been built on either phenomenological or mechanistic
models, where a context is defined by a set of interacting spe-
cies (i.e. biotic factors) affecting each others’ growth rate as
well as by a specific set of abiotic factors shaping the parame-
ter values of such models (Case, 2000). These studies have
provided key insights regarding the mechanisms, as well as
the necessary and sufficient conditions for species persistence
(Svirezhev and Logofet, 1983; Hofbauer and Sigmund, 1998).
However, it is still unclear how to use this knowledge to antic-
ipate unknown observations (Fukami, 2015). For example,
the well-known invasibility criterion, which states that a spe-
cies persists if its invasion growth rate is positive, operates
only if it is known a priori that all the other species in a com-
munity can also persist when removed and reintroduced –
which is seldom the case (Saavedra et al., 2017b; Grainger
and Gilbert, 2019). In fact, using simulations, it has been
shown that empirically parameterised models at the pairwise
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level fail to predict the dynamics of larger experimental com-
munities (Friedman et al., 2017; Tuck et al., 2018).
On the other hand, biodiversity forecasting is a well estab-

lished and required area in ecological research (Clark et al.,
2001; Dietze, 2017). This field is providing the opportunity to
anticipate rather than simply explain biodiversity changes in
ecological communities contingent on explicit scenarios for cli-
mate change, land-use and species re-distributions (Dietze,
2017). Importantly, biodiversity forecasting spans and inte-
grates many model-driven (parametric) and data-driven (non-
parametric) methodologies, such as uncertainty propagation,
statistics, informatics, Bayesian approaches, machine learning,
Markov chain approaches, empirical dynamic modelling
(Sugihara et al., 2012; Harfoot et al., 2014; Cazelles et al.,
2016; Dietze, 2017; Cenci and Saavedra, 2019; Adams et al.,
2020; Maynard et al., 2020), as well as parameterising com-
plex mechanistic models using either demographic, eco-physio-
logical or allometric information (Preston, 1962; Pacala et al.,
1996; Dietze, 2017). However, the majority of these method-
ologies demands extensive amounts of data, their explanatory
power has been contested, and their generalisation has not
always been validated with experimental work (Dietze, 2017;
Clark et al., 2020).
As a response to the above limitations, recent experimental

work has derived heuristic rules to predict species persistence
(Friedman et al., 2017). While these rules have been highly
successful in making out-of-sample predictions (e.g. the persis-
tence of species in microbial communities), their limitation
resides on how to generalise these rules under the uncertainty
derived from the unknown changing environmental conditions
(Levins, 1968). For example, some of these rules completely
eliminate the possibility of forming a community from a spe-
cies pool when smaller subsets of species cannot persist in iso-
lation (Friedman et al., 2017). However, this is precisely the
dynamics observed during different successional stages and
when intransitive competition (e.g. rock–paper–scissors
dynamics) operates in natural and experimental communities
(Odum, 1969; Fukami, 2015; Levine et al., 2017; Saavedra
et al., 2017a; Song et al., 2018a). Moreover, the application of
these rules can be experimentally extensive or unfeasible, call-
ing for new descriptive and predictive approaches that can
take into account the effects of changing environments using
minimal information.
Although these theoretical and empirical studies are pushing

community ecology into a more descriptive and predictive
science, it has been emphasised that conceptual risks need to
be taken in order to establish new approaches that can
address the current limitations in understanding and predict-
ing species persistence under changing conditions (Dietze,
2017). Indeed, finding a compromise between tractability (sim-
plicity) and realism (complexity) has always been at the core
of ecological modelling (May, 1976, 2004). This trade-off typi-
cally divides the capacity of understanding from predicting
ecological dynamics (Sugihara, 1994). Importantly, while the
trade-off between predicting and understanding nonlinear
dynamical systems under changing conditions may be impossi-
ble to fully eliminate (Shmueli, 2010), research into the irre-
versibility of physical and biological systems has suggested
that probabilistic approaches can be used to unify the

deterministic nature of their dynamics and their intrinsic vari-
ability due to changing environmental conditions and instabil-
ities (Prigogine, 1962; Thom, 1972).
In statistical mechanics, given the difficulties in knowing

even the initial conditions of a system (i.e. knowing the exact
state of a system is an idealisation), we may represent the
expected behaviour of a system by the ensemble average – the
average of states (i.e. the possible copies of a system) consis-
tent with given restrictions (e.g. same energy) but independent
of initial conditions (Einstein, 1902; Gibbs, 1902). Each
ensemble is then associated with the probability of a given
qualitative or quantitative state. Conceptually, this framework
moves the interpretation of an ensemble of equally likely
states from an average behaviour to a potential behaviour.
Focusing on the qualitative states of a system (e.g. a system
with S different kinds of particles), the theory of ensembles
can be integrated with the framework of structural stability
(Smale, 1967; Arnold, 1988). Formally, a dynamical system is
said to be structurally stable if the topology of the phase por-
trait is preserved under smooth changes of the vector field. In
other words, structural stability can measure the level of envi-
ronmental change that a system can sustain before undergoing
some transition to a different qualitative state (e.g. from S to
S�1 different kinds of particles). Moreover, because the envi-
ronmental conditions under which systems evolve can never
be exactly duplicated, structural stability is a necessary condi-
tion for the observability of a system. Statistical mechanics
and structural stability have allowed an integration of deter-
minism and randomness in nonlinear dynamical systems (Pri-
gogine et al., 1973), opening new research areas and
applications such as the successful research programs of quan-
tum mechanics and morphogenesis (Planck, 1925; Thom,
1972; Prigogine and Stengers, 1984; Alberch, 1989).
Following the premises above, here we advocate that under-

standing and predicting the persistence of single species under
changing environmental conditions can also be accomplished
by using a probabilistic approach (Lewontin, 1969; Cazelles
et al., 2016; Dietze, 2017; Song et al., 2020). This new pro-
gram can be developed by integrating the statistical concepts
from the theory of ensembles applied to statistical mechanics
(Einstein, 1902; Gibbs, 1902; Prigogine, 1962) with the mathe-
matical concepts of structural stability applied to nonlinear
population dynamics (Lewontin, 1969; May, 1976; Solé and
Valls, 1992; Bastolla et al., 2005; Rohr et al., 2014; Saavedra
et al., 2017b) – what we call structural forecasting.
In this new program, the grand-canonical ensemble (per its

name in the theory of ensembles when the system’s states dif-
fer qualitatively) is formed by the different community config-
urations consistent with given restrictions (e.g. same
governing laws and species interactions) formed by the vari-
ous species that can potentially be present in a given place
and time. Each of these community configurations can then
be considered a micro-canonical ensemble (or a qualitative
state of the grand ensemble), whose own states only differ
quantitatively (i.e. same kinds of species but with different
species abundances). In turn, individual species can represent
subsystems of the grand ensemble formed by the micro ensem-
bles containing such species. Thus, instead of aiming to study
the future behaviour of a system (the realised micro ensemble)
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or subsystem (the presence of a species) by inferring the main
conditions acting upon it (which may be impossible to do),
this program estimates the probability of a future behaviour
based on the fraction of possible conditions compatible with
such behaviour. In the remainder of this manuscript, we
develop the conceptual framework of structural forecasting.
Then, we provide a proof of concept using experimental trials
of interacting microbial species. We show that structural fore-
casting can allow us to estimate the probability of persistence
of single species in local communities, to understand and
interpret this probability conditional on the information we
have concerning a system, and to provide out-of-sample pre-
dictions of species persistence as good as the best experimental
approaches without the need of obtaining extensive amounts
of data.

UNDERSTANDING SPECIES PERSISTENCE

To understand the persistence of a species in an ecological
community, it is important (although not necessary, see Sugi-
hara, 1994; Cenci and Saavedra, 2019) to have tractable
(mechanistic or phenomenological) population dynamics mod-
els upon which one can study cause–effect relationships
between model parameters and model outputs (Case, 2000;
Strogatz, 2014). The stochastic nature of ecological dynamics
can then be incorporated through either random noise or sys-
tematic changes of parameter values (Turchin, 2003; Schreiber
et al., 2019; Yang et al., 2019). Note that this stochasticity is
independent from the intrinsic variability of the dynamics
(e.g. bifurcations or chaotic behaviour), although a strict sepa-
ration between stochastic and chaotic dynamics in ecological
systems is unnecessary and potentially misleading (Ellner and
Turchin, 1995; Boettiger, 2018). Moreover, this separation
becomes unnecessary due to the virtually impossible measure-
ment of the exact initial conditions and knowledge about the
exact equations governing the dynamics of natural systems.
Yet, both the observability of these systems and the fact that
external conditions are seldom the same between any two
points in time suggests that species persistence can be under-
stood by studying the probabilistic nature of ecological com-
munities through the lenses of the theory of ensembles and
structural stability (Kerner, 1962; Lewontin, 1969; Thom,
1972).
As mentioned before, a grand ensemble can be defined as

the copies of a system (community), whose states differ quali-
tatively under given restrictions (e.g. same interaction matrix).
These qualitative states then can be defined as micro ensem-
bles that belong to a region in the phase space (i.e. the space
where all the possible quantitative states of a dynamical sys-
tem are represented), where each of its own quantitative states
(whose probability falls within certain small range) is equally
likely inside the micro ensemble and all other quantitative
states outside the micro ensemble have probability zero.
Hence, a grand ensemble (local community of interacting spe-
cies) can have different micro ensembles (subsets of species
from the full community) each with different quantitative
states (distribution of species abundances) and the density of
each micro ensemble represents the probability of finding the
system in such qualitative state. Thus, the probability of

persistence of a species (a subsystem within the grand ensem-
ble) can be computed by the union of all the micro ensembles
representing the qualitative states compatible with the persis-
tence of this species (i.e. sharing that kind of species or sub-
system). Moreover, it is possible to extend these concepts to
the parameter space, where a point in this space corresponds
to a vector of model parameters. That is, we can focus on
regions in the parameter space compatible with a given state
and the density of each region of which corresponds to the
probability of finding the system in this region – assuming
that each point in the parameter space is equally likely to be
observed. This extension has the advantage of linking model
parameters and model outputs, an essential property for
understanding ecological dynamics.
Formally, the ensemble approach allows us to define and

understand the probability P ið Þ of persistence of a species i as.

P ið Þ¼ ∑
ni

j¼1

P E
ið Þ
j

� �
, (1)

where P E
ið Þ
j

� �
corresponds to the probability of observing the

j th micro ensemble compatible with the persistence of species
i and ni is the total number of micro ensembles that contain
species i. Note that the micro ensembles E

ið Þ
j are mutually

exclusive. Recall that these potential micro ensembles are
defined by the different combinations of kinds of species that
can be observed in a community (the grand ensemble). For
example, considering three species, the set of potential micro
ensembles for species 1 is E 1ð Þ ¼ 1ð Þ, 1,2ð Þ, 1,3ð Þ, 1,2,3ð Þf g.
Note that we are not focusing on the specific abundance (or
biomass) of species, but simply on whether they are present
(i.e. the qualitative state).
Thus, for a system with three species, we can compute the

following probabilities:

P 1ð Þ¼P 1,�2,�3
� �þP 1,2,�3

� �þP 1,�2,3
� �þP 1,2,3ð Þ (2)

P 2ð Þ¼P �1,2,�3
� �þP 1,2,�3

� �þP �1,2,3
� �þP 1,2,3ð Þ (3)

P 3ð Þ¼P �1,�2,3
� �þP 1,�2,3

� �þP �1,2,3
� �þP 1,2,3ð Þ, (4)

where P X, �Yð Þ denotes the joint probability of X persisting
and Y not persisting. Applying the multiplication rule, Bayes
theorem and marginalisation, Eqns 2–4 can be further
expanded to obtain single species probabilities given by

P 1ð Þ¼ Pð1j�2,�3Þ½Pð1,�2j�3ÞþPð�1,�2j�3Þ� 1�P 3ð Þ½ �þPð1,2j�3Þ
1�P 3ð Þ½ �þPð1,3j�2Þ 1�P 2ð Þ½ �þP 1,2,3ð Þ (5)

P 2ð Þ¼ Pð2j�1,�3Þ½Pð2,�1j�3ÞþPð�2,�1j�3Þ� 1�P 3ð Þ½ �þPð1,2j�3Þ
1�P 3ð Þ½ �þPð2,3j�1Þ 1�P 1ð Þ½ �þP 1,2,3ð Þ (6)

P 3ð Þ¼ Pð3j�1,�2Þ½Pð3,�2j�1ÞþPð�3,�2j�1Þ� 1�P 1ð Þ½ �þPð1,3j�2Þ
1�P 2ð Þ½ �þPð2,3j�1Þ 1�P 1ð Þ½ �þP 1,2,3ð Þ, (7)

where PðXj �YÞ denotes the conditional probability of X persist-
ing given that Y does not persist. The equations above
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become a linear system with three equations and three
unknowns (P 1ð Þ, P 2ð Þ and P 3ð Þ) as long as we can compute
the rest of the probabilities from the system under considera-
tion. If the matrix given by the probabilities involving more
than one species has full rank (i.e. the matrix of coefficients
has three independent rows), then the system of eqns 5–7 has
a unique solution for P 1ð Þ, P 2ð Þ and P 3ð Þ.
To calculate the probabilities above, we propose to integrate

the ensemble approach with concepts on structural stability
applied to population dynamics models. For this purpose, we
need to estimate the fraction of the whole parameter space
that is compatible with each micro ensemble. According to
the theory of ensembles, all possible states within the micro
ensemble must appear with an equal probability. This implies
that the parameter space must be sampled uniformly. Note
that this principle is the basis of ergodicity (i.e. time average
equals the ensemble average) and the independence from ini-
tial conditions (Gibbs, 1902). Ecologically, using a uniform
distribution for parameter values means that we assume no
information about how environmental changes (i.e. changes in
model parameters) will affect the growth rate of species. Addi-
tionally, these different states need to be consistent with given
restrictions. Thus, we establish that the probability of a micro
ensemble corresponds to the density of its own quantitative
states governed by the same population dynamics and interac-
tion matrix A (i.e. the matrix whose elements correspond to
the per capita effect of one species on the per capita growth
rate of another species) of the grand ensemble.
Following the assumptions above, we apply the framework

of structural stability in ecology (Saavedra et al., 2017b; Song
et al., 2018b) to estimate the probability of persistence of a
micro ensemble E

ið Þ
j conditional on a given interaction matrix

A as

PðE ið Þ
j jAÞ¼

vol E
ið Þ
j ∩S

� �
vol S
� � , (8)

where S is the number of species, vol S
� �

is the volume of the
S-dimensional unit ball (i.e. the full parameter space) and
vol E

ið Þ
j ∩S

� �
corresponds to the volume of the intersection of

the domain of the micro ensemble with the unit ball. That is,
the probability PðE ið Þ

j jAÞ is given by the fraction of parameter
values compatible with the states of the micro ensemble. In our
example with three species (i.e. S¼ 3), if E

ið Þ
j ¼ 1,2,3f g, then the

probability Pð1,2,3jAÞ reduces to finding the fraction of the
parameter space compatible with the persistence of all three
species together. Similarly, if the micro ensemble is E

ið Þ
j ¼ 1,2f g,

then the probability Pð1,2,�3jAÞ consists on finding Pð1,2j�3,AÞ
(recall that ½1�Pð3jAÞ� will be solved as an unknown variable
in Eqns 5–7). It is also worth noting that this approach is for-
mulated independently from the precise specification of initial
conditions – following the premise of the theory of ensembles.

ILLUSTRATIVE EXAMPLE

To illustrate our approach, we calculated the probabilities of
persistence for three-competing species. We assumed that the
competition system can be described by a model topologically
equivalent to the classic Lotka–Volterra (LV) model (Case,

2000) – that is, the unstable and stable fixed points in the clas-
sic LV model must be mapped into a pair of unstable and
stable fixed points in the modified model (Cenci and Saave-
dra, 2018a). The classic LV competition model written in the
r-formalism is given by:

dNi

dt
¼N ri� ∑

S

j¼1

aijNj

 !
(9)

dN

dt
¼diag Nð Þ r�ANð Þ, (10)

where Ni is the abundance (or biomass) of species i, ri is the
intrinsic growth rate of species i, S is the number of species
and aij is an element of the interaction matrix A representing
the per capita competitive effect of species j on species i. Note
that under competition dynamics, it is expected to assume
ri>0 and aij>0. Bold characters denote matrix notation, for
example, r¼ ½r1, . . .,rS�T (the superindexT denotes the transpose
operator). The classic LV model has been derived from ther-
modynamics principles (Michaelian, 2005), principles of con-
servation of mass and energy (Svirezhev and Logofet, 1983),
from chemical kinetics in large populations (Täuber, 2011),
and can exhibit a rich behaviour such as chaotic dynamics
and limit cycles (Vano et al., 2006).
Importantly, by assuming this classic LV model, it is possi-

ble to simplify the parameter space to a single phenomenolog-
ical parameter (e.g. the intrinsic growth rates ri), representing
how environmental conditions (biotic and abiotic factors)
affect the balance between mortality and resource intake.
Recall that the interaction matrix A is the restriction we are
imposing on the micro ensembles (can be thought of as analo-
gous to temperature in thermodynamics). Otherwise, if we
treated A also as a random variable, we would end up with
no information about the system other than what one can
obtain from standard random matrix theory (Serván et al.,
2018). One can simply apply small perturbations to A; how-
ever, this would lead us to sensitivity analysis (small perturba-
tions around an expected value) rather than structural
stability analysis (Meszéna et al., 2006), making results depen-
dent on the type of perturbation (Saavedra et al., 2014).
As a starting point, we propose to estimate the probabilities

of species persistence by focusing on the probability of feasi-
bility of micro ensembles. We define the probability of feasi-
bility as the probability of finding a positive solution (i.e.
N∗

i >0 for all species i under equilibrium dNi=dt¼ 0) in the LV

model. Note that feasibility provides the necessary condition
for persistence, permanence and the existence of bounded
orbits (Hofbauer and Sigmund, 1998). Thus, for a given inter-
action matrix A, feasibility in LV models will be satisfied as
long as the direction of the r-vector (under the r-formalism)

falls inside the feasibility domain DF Að Þ¼ r¼N∗
1v1

�
þ⋯þN∗

SvS,withN
∗
1, . . .,N

∗
S>0g, where vi is the i th column

vector of A and N∗
i is the feasible (i.e. positive) abundance of

species i at equilibrium: N∗ ¼A�1r. Because it is only neces-
sary to know the different directions of r-vectors, their magni-
tude can be normalised by any norm (Rohr et al., 2016; later
we will be considering the ‘1 norm). For example, for the
micro ensemble 1,2,3f g, the probability of feasibility can be
calculated as.
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Pð1,2,3jAÞ¼ 2Svol DF Að Þ∩S
� �
vol S
� � , (11)

where 2S normalises the unit ball S of parameter space (i.e.
j rj jj1≤1) to the positive orthant (i.e. S∩S

≥0) and
vol DF Að Þ∩S
� �

corresponds to the volume of the intersection
of the feasibility domain with the unit ball.
For micro ensembles with only two species (e.g. 1,2f g), the

probability of feasibility can also be calculated using eqn 11,
but the interaction matrix A needs to be modified. The modifi-
cation can be done by either reducing the system by one
dimension (e.g. removing the columns and rows related to
species 3) or by making one species independent from the rest
(e.g. setting to zero the interspecific interactions of species 3).
This procedure will provide a conditional probability
Pði, jjA�kÞ, where i and j are the two observed species, A�k is
the modified interaction matrix without species k. In the case
of ensembles with a single species (e.g. 1f g), it is also possible
to use Equation 11 and calculate Pði,�jjA�k,jÞ, where A�k,j is
the modified interaction matrix A�k with the addition of mov-
ing the column vector of species j to its own axis, such that
the new feasibility domain covers both the region where spe-
cies i and j persist and the region where only species i persists

(Saavedra et al., 2017b). Following this methodology, we can
calculate all the probabilities required in eqns 5–7 and solve
for Pð1jAÞ, Pð2jAÞ and Pð3jAÞ – the probabilities of persis-
tence of single species.
Figures 1a and b shows the regions of the parameter space

of intrinsic growth rates r (2000 directions of r-vectors sam-
pled uniformly inside the full parameter space (Song and
Saavedra, 2018)) compatible with the feasibility of each micro
ensemble derived from two illustrative 3-species competition
systems under classic LV dynamics. Note that, for competi-
tion systems, the normalised parameter space of r (the inter-
section between the positive orthant and the unit ball) can be
visualised as the S-1 dimensional unit simplex (i.e. ∑S

i¼1ri ¼ 1,
the ‘1 norm) (Saavedra et al., 2017b). Each simplex (Figs 1a
and b) corresponds to one interaction matrix A, and each
point inside the simplex represents a fixed point (a solution)
of eqn 9 obtained by simulating the classic LV (Type I) model
with a single initial condition under a given direction of the r-
vector. The closer a point is to a vertex i (representing the
parameter ri), the larger the fraction of resources that such
species i uses from the environment. The first matrix (Fig. 1a)
corresponds to a case where all species have similar competi-
tion effects on each other. The second matrix (Fig. 1b)

(a) (c) (e)

(b) (d) (f)

Figure 1 Probabilistic approach to understand species persistence under changing environments. The figure represents two illustrative communities of three-

competing species. Panels (a and b) present the association between the parameter space of r-vectors and the equilibrium state N∗ each interaction matrix

A (see text for details). The parameter space is represented as a two-dimensional unit simplex, meaning that each point is a vector of intrinsic growth rates

that sums one and simplex vertices indicate the species that has ri ¼ 1. Each color inside the simplex corresponds to a different micro ensemble of species

that resulted from simulating Lotka–Volterra (LV) dynamics using the interaction matrix A shown and a given r-vector. For example, the micro ensemble

1,2,3f g (brown points) implies that all the three species had positive solutions, whereas micro ensemble 1,2f g (purple points) implies that species 3 went

extinct (zero solution). This simplex is constructed by simulating LV dynamics with 2000 different directions of r-vectors sampled uniformly over the unit

simplex under the same initial condition N. Panels (c and d) represent the micro ensembles from the simplex that contains species 1, 2 or 3 and their

respective frequency of occurrence under the simulations. The sum of the frequency of occurrence of these micro ensembles in the pie chart corresponds a

numerical approximation to the probability of persistence of a given species (Pð1jAÞ, Pð2jAÞ and Pð3jAÞ). Panels (e and f) represent the distribution (box

plots) of Pð1jAÞ, Pð2jAÞ and Pð3jAÞ generated by simulating LV dynamics over 100 different initial conditions. Left, middle and right panels correspond to

the simulations of the classic (Type I), Type II and stochastic LV dynamics (see text for details). The pink diamonds correspond to the analytical

probabilities Pð1jAÞ, Pð2jAÞ and Pð3jAÞ calculated for each individual species following Equations 5–7 in the text
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corresponds to transitive dynamics (i.e. the matrix allows for
a rock–paper–scissors competition loop (Saavedra et al.,
2017b)), where species 2 is the strongest competitor.
Figures 1c and d shows the corresponding probabilities of

persistence of single species (PðijAÞ, i¼ 1,2,3) using the same
initial conditions as in Figures 1a and b. Each pie chart repre-
sents the probability associated with all the micro ensembles (see
Figs 1a and b) to which a species can belong. Thus, the sum of
the probabilities of each micro ensemble (i.e. fraction of simula-
tions in which that micro ensemble is feasible) gives the probabil-
ity of persistence of single species under changing environments.
Recall that we are sampling uniformly the directions within the
parameter space that represents the external conditions and, con-
sequently, all states inside a micro ensemble have equal probabil-
ity – following the principle of the theory of ensembles.
Figures 1e and f shows the distribution of the probability of

persistence of single species (PðijAÞ, i¼ 1,2,3) using the classic
LV model across 100 initial conditions as black box plots
(200 000 simulations: 100 initial conditions and 2000 directions
of r-vectors for each initial condition) and the analytical approx-
imations computed by solving eqns 5–7 as pink symbols. As
expected, these probabilities confirm that in the first matrix, the
three species have a similar probability of persistence, while in
the second matrix species 2 has the largest probability. Impor-
tantly, the analytical probabilities were close to the numerical
ones, indicating that the solutions are only weakly influenced by
the initial conditions – as the theory of ensembles requires in
order to be implemented. Note that differences between the ana-
lytical and numerical probabilities can be attributed to the num-
ber of samples (here 200 000), size and number of integration
steps (here 10�2 over 200 time steps), species extinction thresh-
olds (here 10�4) and dynamical instabilities (leading to different
boundary equilibria) considered for the simulations.
Furthermore, Figures 1e and f shows that the estimated

probabilities of persistence of single species are also consistent
with widely used modified LV models, as expected from previ-
ous work (Cenci and Saavedra, 2018a). Specifically, we
repeated the simulations above, but instead of using the clas-
sic LV model (eqn 9), we used a Type II LV model (middle
panel) and a stochastic LV model (right panel). The Type II
LV model is given by multiplying A in Eqn. 9 by the diagonal
matrix M with elements mii ¼ 1= 1þNið Þ) (Hastings and Pow-
ell, 1991). The stochastic LV model is given by adding the
term v tð Þ= ffiffiffi

S
p

to eqn (9), where v tð Þ is the Gaussian white
noise with zero mean and correlations given by

hvi tð Þvj t0ð Þi¼ βijδ t� t0ð Þ using βij ¼Ni ri� ∑
S

j¼1

aijNj

 !
8i¼ j and

zero otherwise, while δ characterises the white noise (McKane
et al., 2014). Overall, Figure 1 shows that our proposed
approach can be used to estimate and understand either ana-
lytically or numerically the probability of persistence of single
species under changing environments.

PREDICTING SPECIES PERSISTENCE

While probability is not intrinsically intended to establish cate-
gorical predictions – a probabilistic thinking is rooted on the
idea of (conditional) expected values (de Finetti, 2017) – the

value of a theory can only be assessed based on its capacity to
explain and predict the natural world (Poincaré, 1905). Follow-
ing this premise, the probabilities that can be derived from our
proposed approach correspond to the probability of persistence
of single species assuming that all parameter values are equally
likely (i.e. the prior is a uniform distribution of intrinsic growth
rate directions). Ecologically, this can be interpreted as either
the context under which conditions change arbitrarily, or the
context under which species did not have time to adapt to the
current conditions and, as a consequence, parameter values can
take any potential value (Levins, 1968; Song et al., 2017, 2018a;
Cenci et al., 2018). Then, predictions can be made by establish-
ing a threshold (λ) against which probabilities can be compared.
For example, if we choose λ¼ 0:5, then we predict that species i
will persist if this species has a probability of persistence
P ið Þ>0:5. Alternatively, one can establish as a criterion that
only the species belonging to the micro ensemble (out of all pos-
sible ones) with the largest probability of feasibility will persist,
or we can also introduce standard statistical approaches for
prediction analyses (Rohr et al., 2010).
However, in many occasions, the set of species under inves-

tigation may have already evolved towards specific environ-
mental conditions or may have been observed under current
or controlled conditions (Frederickson, 2017; Song et al.,
2020). For example, in laboratory experiments, typically the
species under investigation are well adapted to the experimen-
tal conditions when in isolation (Hoek et al., 2016). This selec-
tion process can bias the range of parameter values (e.g.
intrinsic growth rates) under which a given system is
observed, potentially allowing the existence of highly unlikely
micro ensembles. To empirically explain these cases, we used
publicly available data from a very detailed and controlled
study performing persistence experiments by co-inoculating
different combinations of heterotrophic soil-dwelling bacterial
species at varying initial fractions, and propagating them
through five growth–dilution cycles. To illustrate our
approach numerically and graphically over the simplex of all
possible intrinsic growth rates (as in Fig. 1), we selected eight
systems (see Fig. 2 for details) of three-competing species
from the experimental data (i.e. the systems that have only
competitive interactions among the species).
Figure 2 shows the location of the direction of the r-vector

inside the unit simplex for each of the eight experimental com-
petition systems. These r-vectors were inferred by fitting via
least-squares the classic LV competition model (eqn 9) to the
observed abundance time series of species monocultures
(Friedman et al., 2017). Additionally, the figure shows the size
of the different potential micro ensembles for each studied
system by performing numerical simulations (using Eqn 9)
using the inferred A matrices and 2000 directions of r-vectors
sampled uniformly inside the full parameter space (Song and
Saavedra, 2018). Each interaction matrix A was inferred
through pairwise tournaments by fitting via least-squares Eqn.
9 to the observed time series of species abundances (Friedman
et al., 2017). Note that different methods to infer the interac-
tion matrix have been introduced in the literature involving
regression methods, press or pulse perturbations, Bayesian
approaches and machine learning algorithms (Laska and
Wootton, 1998; Cao et al., 2016; Dietze, 2017; Martin et al.,
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2018; Cenci et al., 2019; Maynard et al., 2020). Interestingly,
the figure shows that the majority (five out of eight) of
inferred r-vectors are located within the least probable (small-
est) micro ensemble – the one containing all three species
(brown points), revealing how highly tuned these experimental
systems can be to their environments.
The examples above further imply that predictions on these

systems may be done more accurately by comparing the esti-
mated probabilities of persistence PðijAÞ (derived from the
grand ensemble average) against the threshold λ given by the
micro ensemble average formed by all species together. That
is, λ can be defined by the expected probability of species per-
sistence ω Að Þ within the micro ensemble formed by
E¼ 1, . . .,Sf g. This probability can be calculated as
ω Að Þ¼Pð1, :::,SjAÞ1S, where Pð1, :::,SjAÞ corresponds to the
probability of feasibility of the full micro ensemble described
by the interaction matrix A. Mathematically, ω Að Þ represents
the probability of S independent Bernoulli trials (a species is
present or not), whose product corresponds to the probability
of the full micro ensemble. That is, differently from the prob-
ability of persistence of a single species PðijAÞ, ω Að Þ is the
expected probability of persistence for any randomly chosen
species within the community (Song et al., 2020). Ecologically,
this probability can also be interpreted as the expected frac-
tion of species that can persist in a system described by A,
assuming that parameter values (and therefore quantitative
states) are all equally likely. This is also analogous to an iso-
morphic system, where its elements can be treated as indepen-
dent and as having equal likelihood (Prigogine and Stengers,

1984). Therefore, the threshold λ¼ω Að Þ can be interpreted as
the minimum potential (probability) that a randomly chosen
species needs to have in order to persist under changing con-
ditions consistent with given restrictions A.

PROOF OF CONCEPT

We provide a proof of concept to illustrate the usefulness of
structural forecasting to predict species persistence in field or
experimental settings. Specifically, we follow the methodology
described above to make out-of-sample predictions of the
competition outcomes of the eight laboratory experiments
involving three-competing species (24 individual species out-
comes in total; Friedman et al., 2017). We predict that species
i persists if PðijAÞ>λ¼ω Að Þ. While the values of PðijAÞ are
analytically calculated, similar results can be obtained by com-
puting probabilities numerically using an extensive sample of
different directions of r-vectors and initial conditions. To illus-
trate the performance of our predictions, we built a confusion
matrix displaying the percentages of true positives, false posi-
tives, false negatives and true negatives (Fig. 3a). Figure 3b
shows that our predictions match the experimental outcomes
(i.e. sum of true positives and true negatives) in 71% of the
cases (a one-sided Binomial test B 24,0:5ð Þ for this prediction
accuracy gives P = 0.03).
To further analyse the performance of our predictions, we

used as a benchmark the predictions derived from the best
experimental approach (called the assembly rule) proposed by
Friedman et al., 2017. This approach establishes that if a
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species extracted from Friedman et al. (2017). Each two-dimensional simplex was formed by running Lotka–Volterra (LV) dynamics using the inferred

competition matrix A from a given system, 2000 different directions of r-vectors sampled uniformly over the unit simplex and a single initial condition N.

Each point in a given simplex corresponds to the simulation outcome using one r-vector and each colour represents a given micro ensemble (see Fig. 1).
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corresponds to the ensemble of species that was observed in the majority of LV simulation outcomes (more than 70 out of 100 initial conditions) using all
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(Pf), Pseudomonas putida (Pp), Pseudomonas veronii (Pv) and Serratia marcescens (Sm)
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species is out-competed in a pairwise tournament by any of
the species forming the potential three-species micro ensemble,
then this species will not persist in the three-species tourna-
ment. To perform these predictions, we used the experimental
pairwise tournaments reported in Friedman et al., 2017 for
our studied subset of competing species. Similar to our predic-
tions, Figure 3c shows that these heuristic predictions match

the experiments in 71% of the cases. Interestingly, this experi-
mental approach yields higher percentages for true negatives
than our predictions, indicating that this method is more effi-
cient in detecting extinctions. However, the experimental
approach performs worse than our probabilistic approach for
true positives, indicating that our method has more power to
detect surviving species.
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Additionally, we tested our probabilistic approach beyond
the case of three-competing species. In particular, we tested
the outcome of combining eight microbial species involving
both competition and facilitation in the pairwise interaction
matrix A as reported in Friedman et al., 2017 (Fig. 4). Note
that this interaction matrix was parameterised using pairwise
tournaments only. The dimensionality and nature of this
eight-species community demanded us to estimate the proba-
bilities (PðijAÞ) computationally, only the threshold (λ¼ω Að Þ)
was computed analytically. That is, the probabilities PðijAÞ
were estimated by running classic LV dynamics with 100 000
directions of r-vectors sampled uniformly on the positive
orthant of the unit ball and random initial conditions. Fig-
ure 4 shows that our probabilistic approach correctly pre-
dicted seven out of eight cases (recall that we predict that a
species persists if PðijAÞ>λ¼ω Að Þ).
Finally, we compared our predictions against the predic-

tions from the experimental approach of Friedman et al.
(2017). Figure 4 shows that using all the pairwise tourna-
ments, the experimental approach correctly predicted four out
of eight cases. However, adding the 56 results (plus replicates)
from trio tournaments, the experimental approach correctly
predicted seven out of eight cases (Fig. 4), revealing the
importance of adding information about changing conditions
(Friedman et al., 2017). Overall, these findings illustrate that
structural forecasting can provide accurate predictions and be
as good as the best experimental approaches without the need
of extensive or potentially unfeasible experimental work.

FINAL THOUGHTS

Probability is defined as the (conditional) belief about the
occurrence of a given event (de Finetti, 2017). This belief is
updated according to new available information, providing a
measure of the uncertainty we have concerning an event at
any given point in time. Similarly, our knowledge about the
outcomes (e.g. species extinctions) of ecological communities
is uncertain given the several unknown factors affecting eco-
logical and evolutionary dynamics (e.g. governing equations,
intrinsic randomness, initial conditions, parameter values and
external perturbations), but it has been shown that these out-
comes can be approximated following different assumptions,
simplifications and inferences (Levins, 1968; Margalef, 1968;
Vandermeer, 1970; May, 1976; Svirezhev and Logofet, 1983;
Sugihara, 1994; Case, 2000; Turchin, 2003). Hence, these
uncertainties reveal that we ought to move away from making
categorical analyses of ecological communities and embrace
probability as a natural approach to understand and predict
ecological dynamics (Lewontin, 1969; Cazelles et al., 2016;
Dietze, 2017; Song et al., 2020).
Here, we advocate for a probabilistic thinking to under-

stand and predict the persistence of single species embedded
in ecological communities under changing environmental
conditions. Borrowing concepts from the theory of ensem-
bles applied to statistical mechanics and the mathematics of
structural stability applied to population dynamics models,
we have introduced a probabilistic approach called struc-
tural forecasting and have used numerical and analytical
tools to illustrate its power and applicability. While we have

just centred on a small fraction of the possible applications
and study systems (i.e. using feasibility in LV competition
systems), we hope that future work can adopt probabilistic
approaches for understanding and performing out-of-sample
predictions of biodiversity changes in different ecological
communities. This can involve multitrophic systems, differ-
ent conditions for persistence, different prediction thresholds
and other types of phenomenological or mechanistic models.
We believe that structural forecasting can be used to better
understand the environmental factors acting on ecological
systems, and to be able to predict whether a species invades
or remains in a community, a community evolves towards a
particular trajectory or a community recovers after a pertur-
bation. In the face of larger and more frequent climatic
variations, building probabilistic and testable methodologies
to understand and predict the persistence of species under
changing conditions is of central importance for developing
successful strategies for sustaining entire ecosystems and
human health (Stenseth et al., 2002; Walther, 2010; Dirzo
et al., 2014; Smith et al., 2014; Lu et al., 2016; Vellend,
2018; Rohr et al., 2020).
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Bastolla, U., Lässig, M., Manrubia, S.C. & Valleriani, A., (2005).

Biodiversity in model ecosystems, i: coexistence conditions for

competing species. J. Theor. Biol., 235, 521–530.
Boettiger, C. (2018). From noise to knowledge: how randomness

generates novel phenomena and reveals information. Ecol. Lett., 21,

1255–1267.
Cao, H.T., Gibson, T.E., Bashan, A. & Liu, Y.Y. (2016). Inferring

human microbial dynamics from temporal metagenomics data: Pitfalls

and lessons. BioEssays, 39, 1600188.

Case, T.J. (2000). An Illustrated Guide to Theoretical Ecology. Oxford

Univ. Press, Oxford.

© 2020 John Wiley & Sons Ltd/CNRS

Methods Structural forecasting 9

https://github.com/MITEcology/ELE_Saavedra_etal_2020
https://github.com/MITEcology/ELE_Saavedra_etal_2020


Cazelles, K., Mouquet, N., Mouillot, D. & Gravel, D. (2016). On the

integration of biotic interaction and environmental constraints at the

biogeographical scale. Ecography, 39, 921–931.
Cenci, S., Montero-Castaño, A. & Saavedra, S. (2018). Estimating the

effect of the reorganization of interactions on the adaptability of

species to changing environments. J. of Theor. Bio., 437, 115–125.
Cenci, S. & Saavedra, S. (2018a). Structural stability of nonlinear

population dynamics. Phys. Rev. E, 97, 012401.

Cenci, S. & Saavedra, S. (2018b). Uncertainty quantification of the effects

of biotic interactions on community dynamics from nonlinear time-

series data. J. R. Soc. Interface, 15, 20180695.

Cenci, S. & Saavedra, S. (2019). Non-parametric estimation of the

structural stability of non-equilibrium community dynamics. Nature

Ecology & Evolution, 3, 912.

Cenci, S., Sugihara, G. & Saavedra, S. (2019). Regularized s-map for

inference and forecasting with noisy ecological time series. Methods

Ecol. Evol., 10, 650–660.
Clark, A.T., Turnbull, L.A., Tredennick, A., Allan, E., Harpole, W.S.,

Mayfield, M.M. et al. (2020). Predicting species abundances in a

grassland biodiversity experiment: trade-offs between model complexity

and generality. J. Ecol., 108, 774–787.
Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley,

J.A. et al. (2001). Ecological forecasts: An emerging imperative.

Science, 293, 657–660.
de Finetti, B. (2017). Theory of probability: a critical introductory

treatment. Wiley, New York.

Dietze, M.C. (2017). Ecological Forecasting. Princeton Univ, Press.

Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B. & Collen,

B. (2014). Defaunation in the anthropocene. Science, 345, 401–406.
Einstein, A. (1902). Kinetische theorie der warmegleichgewichtes und des

zweiten hauptsatzes der thermodynamik. Ann. Phys., 9, 417–433.
Ellner, S.P. & Turchin, P. (1995). Chaos in a noisy world: new methods

and evidence from time-series analysis. Am. Nat., 145, 343–375.
Frederickson, M.E. (2017). Mutualisms are not on the verge of

breakdown. Trends Ecol. Evol., 32, 727–734.
Friedman, J., Higgins, L.M. & Gore, J. (2017). Community structure

follows simple assembly rules in microbial microcosms. Nature Ecology

& Evolution, 1, 0109.

Fukami, T. (2015). Historical contingency in community assembly:

integrating niches, species pools, and priority effects. Annu. Rev. Ecol.

Evol. Syst., 46, 1–23.
Gibbs, J.W. (1902). Elementary Principles in Statistical Mechanics.

Charles Scribner’s Sons, New York.

Grainger, T.N. & Gilbert, J.M.L.B. (2019). The invasion criterion: A

common currency for ecological research. Trends Ecol. Evol., 34,

925–935.
Harfoot, M.B.J., Newbold, T., Tittensor, D.P., Emmott, S., Hutton, J.,

Lyutsarev, V. et al. (2014). Emergent global patterns of ecosystem

structure and function from a mechanistic general ecosystem model.

PLoS Biol., 12, e1001841.

Hastings, A. & Powell, T. (1991). Chaos in a three-species food chain.

Ecology, 72, 896–903.
Hoek, T.A., Axelrod, K., Biancalani, T., Yurtsev, E.A., Liu, J. & Gore, J.

(2016). Resource availability modulates the cooperative and competitive

nature of a microbial cross-feeding mutualism. PLoS Biol., 14,

e1002540.

Hofbauer, J. & Sigmund, K. (1998). Evolutionary Games and Population

Dynamics. Cambridge University Press, Cambridge.

Kerner, E.H. (1962). Gibbs ensemble and biological ensemble. Ann. N. Y.

Acad. Sci., 96, 975–984.
Laska, M.S. & Wootton, J.T. (1998). Theoretical concepts and empirical

approaches to measuring interaction strength. Ecology, 79, 461–476.
Levine, J.M., Bascompte, J., Adler, P.B. & Allesina, S. (2017). Beyond

pairwise mechanisms of species coexistence in complex communities.

Nature, 546, 56.

Levins, R. (1968). Evolution in Changing Environments: Some Theoretical

Explorations. Princeton University Press, NJ.

Lewontin, R.C. (1969). The meaning of stability. Brookhaven Symp. Biol.,

22, 13–24.
Lu, X., Gray, C., Brown, L.E., Ledger, M.E., Milner, A.M., Mondragon,

R.J. et al. (2016). Drought rewires the cores of food webs. Nature

Climate Change page, 6(9), 875–878. https://doi.org/10.1038/nclimate

3002.

Margalef, R. (1968). Perspectives in Ecological Theory. University of

Chicago Press, Chicago.

Martin, B.T., Munch, S.B. & Hein, A.M. (2018). Reverse-engineering

ecological theory from data. Proc. R. Soc. B, 285, 0180422.

May, R.M. (1976). Simple mathematical models with very complicated

dynamics. Nature, 261, 459–467.
May, R.M. (2004). Uses and abuses of mathematics in biology. Science,

303, 790–793.
Maynard, D.S., Miller, Z.R. & Allesina, S. (2020). Predicting coexistence

in experimental ecological communities. Nature Ecology & Evolution, 4,

91–100.
McKane, A.J., Biancalani, T. & Rogers, T. (2014). Stochastic pattern

formation and spontaneous polarisation: The linear noise

approximation and beyond. Bull. Math. Biol., 76, 895–921.
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