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INTRODUCTION

Ecological communities are subject to external pertur-
bations such as fires, storms, pollution, and overfishing, 
which are increasing in magnitude and frequency due 

to anthropogenic impacts (Barlow et al., 2018; Jackson 
et al., 2001; Turner et al., 1997). Indeed, strong and fre-
quent perturbations can lead to species extinctions and, 
as a consequence, to the loss of critical ecosystem ser-
vices (Cardinale et al., 2012; Levin & Lubchenco, 2008). 
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Abstract

Managing ecological communities requires fast detection of species that are 

sensitive to perturbations. Yet, the focus on recovery to equilibrium has prevented 

us from assessing species responses to perturbations when abundances fluctuate 

over time. Here, we introduce two data-driven approaches (expected sensitivity 

and eigenvector rankings) based on the time-varying Jacobian matrix to rank 

species over time according to their sensitivity to perturbations on abundances. 

Using several population dynamics models, we demonstrate that we can infer 

these rankings from time-series data to predict the order of species sensitivities. 

We find that the most sensitive species are not always the ones with the most 

rapidly changing or lowest abundance, which are typical criteria used to monitor 

populations. Finally, using two empirical time series, we show that sensitive species 

tend to be harder to forecast. Our results suggest that incorporating information on 

species interactions can improve how we manage communities out of equilibrium.
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2  |      DETECTING SENSITIVE SPECIES

In order to avoid the loss of biodiversity and ecosystem 
services under these circumstances, it is crucial to un-
derstand not only the response of the whole community 
to perturbations but also the response of its constituent 
species. Individual species may vary in their sensitivity 
to perturbations—that is, how much their abundance 
changes after a perturbation—and such sensitivity may 
be linked to their role in the community (Beauchesne 
et al., 2021; Dirzo et al., 2014; Estes et al., 2011). For in-
stance, keystone species such as apex predators can be 
highly sensitive to perturbations and also crucial to 
maintain community functioning (Estes et al.,  2011). 
Therefore, detecting sensitive species has the potential 
to greatly improve management and conservation strate-
gies for maintaining community functioning and avoid-
ing biodiversity loss.

Traditional studies in theoretical population ecology 
have established several important measures of how 
single species respond to perturbations (Caswell, 2000; 
Morris & Doak,  2002). Following these developments, 
indicators such as species abundance or rate of de-
cline are routinely used to characterize the behaviour 
of populations and determine extinction risks (Mace 
et al.,  2008). More recently, several studies have incor-
porated information on species interactions to further 
explore how individual species respond to perturbations 
(Arnoldi et al., 2018; Beauchesne et al., 2021; Medeiros 
et al.,  2021; Saavedra et al.,  2011; Weinans et al.,  2019) 
and, in turn, how individual species can inform us about 
whole-community changes (i.e. best-indicator or sensor 
species) (Aparicio et al.,  2021; Dakos,  2018; Ghadami 
et al.,  2020; Lever et al.,  2020; Patterson et al.,  2021). 
These studies often rely on the assumption of a popula-
tion dynamics model under a stable equilibrium to which 
the community returns after a small pulse perturbation 
on abundances. A pulse perturbation is defined as an in-
stantaneous external shock (e.g. fire, storm) that causes 
a change in species abundance (Bender et al., 1984; Kéfi 
et al., 2019). Under this assumption, information on the 
Jacobian matrix—the matrix containing the local effects 
of each species on the growth rate of other species and 
itself (Song & Saavedra, 2021)—can be used to partition 
the recovery rate of the community into its constituent 
species (Arnoldi et al., 2018; Ives et al., 1999; Medeiros 
et al., 2021). A community slightly displaced from equi-
librium will asymptotically return along the direction 
spanned by the leading eigenvector of the Jacobian ma-
trix, that is, the eigenvector associated with the lead-
ing (i.e. largest) eigenvalue (Dakos,  2018; Patterson 
et al.,  2021; Strogatz,  2018). Thus, over the short-term, 
different species may show distinct recovery rates after 
a perturbation depending on the direction of the leading 
eigenvector (Arnoldi et al., 2018; Dakos, 2018; Ghadami 
et al., 2020; Patterson et al., 2021; Weinans et al., 2019). 
Nevertheless, these ideas cannot be directly applied to 
communities without a stable equilibrium for which 
abundances fluctuate over time such as communities with 

cyclic or chaotic dynamics (Benincà et al.,  2009, 2015; 
Clark & Luis, 2020; Krebs et al., 1995; Sugihara, 1994; 
Ushio et al., 2018). Moreover, from a practical point of 
view, it can be unfeasible to monitor how species respond 
to perturbations using parameterized models given the 
large amounts of data required to test model assump-
tions and infer parameters (Bartomeus et al.,  2021; 
Bender et al., 1984).

These limitations raise the question of whether we can 
measure species responses to perturbations in communi-
ties for which dynamics are not at equilibrium. To address 
this problem, recent methodologies have focused on ex-
tracting information directly from abundance time series 
and measuring how non-equilibrium communities re-
spond to perturbations (Cenci & Saavedra, 2019; Rogers 
et al., 2022; Ushio et al., 2018). Using a data-driven method 
known as the S-map to reconstruct the time-varying 
Jacobian matrix (Deyle et al., 2016; Sugihara, 1994), re-
cent studies have investigated how communities respond 
to perturbations on abundances (Ushio et al., 2018) and 
on the governing dynamics (Cenci & Saavedra,  2019). 
Regarding perturbations on abundances, it has been sug-
gested that the leading eigenvalue of the Jacobian matrix 
can be used to quantify how communities respond to 
small perturbations at any given time (Ushio et al., 2018). 
Differently from a recovery rate in a community with a 
stable equilibrium, under non-equilibrium dynamics, the 
leading eigenvalue approximates the local growth rate of 
small perturbations along a given direction (Eckmann & 
Ruelle, 1985; Mease et al., 2003; Vallejo et al., 2017). Thus, 
in contrast to a community at equilibrium with a constant 
capacity to recover from perturbations, a community 
under non-equilibrium dynamics has a response to pertur-
bations that depends on how species abundances change 
over time (i.e. state-dependent) (Cenci & Saavedra, 2019). 
In particular, the state of a community may determine 
its response to perturbations not only through the local 
species' effects on each other (i.e. Jacobian matrix) but 
also through the local time scale of the dynamics (e.g. per-
turbation effects may take longer to appear under a long 
transient) (Hastings et al., 2018; Rinaldi & Scheffer, 2000). 
Because of such state-dependent behaviour, species abun-
dances have been shown to be harder to forecast, on av-
erage, in states where a community is more sensitive to 
perturbations (Cenci et al.,  2020). The question that re-
mains to be answered is whether we can decompose a 
community's response to monitor the time-varying sen-
sitivity of each of its species and whether this can com-
plement traditional single-species indicators that do not 
use the information on species interactions. Developing 
such a species-level measure of response to perturbations 
could also allow us to test the hypothesis that, as observed 
for entire communities (Cenci et al., 2020), species that are 
more sensitive to perturbations at a given state are also 
harder to forecast.

Here, we develop two complementary approaches 
based on dynamical systems theory and nonlinear time 
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      |  3MEDEIROS et al.

series analysis to rank species over time under non-
equilibrium dynamics according to their sensitivity to 
small pulse perturbations on abundances. By doing so, 
we provide a data-driven framework to detect which spe-
cies in a community are the most and least sensitive to 
such perturbations at any given time. Our ranking ap-
proaches consist of an analytical measure of the expected 
sensitivity of each species and an alignment measure of 
each species with the leading eigenvector of the Jacobian 
matrix. We test both approaches by performing pertur-
bation analyses using five synthetic time series gener-
ated from population dynamics models. We show that 
we can accurately rank species sensitivities, especially 
using the expected sensitivity approach. However, the 
eigenvector approach requires no a priori information 
about perturbations and performs better when infor-
mation about perturbations—used to compute expected 
sensitivities—is biased. Importantly, we show that both 
approaches remain accurate when inferring the Jacobian 
matrix directly from the time series with the S-map. 
Finally, we apply both approaches to two empirical time 
series and show that species that are more sensitive to 
perturbations at a given time tend to have larger abun-
dance forecast errors, especially when the local growth 
rate of perturbations is high.

QUA NTI FY ING SPECIES 
SENSITIVITIES TO  
PERTU RBATIONS

To quantify species sensitivities to perturbations, we 
assume that species abundances in a community with 
S species change through time according to a generic 
function: dN

dt
= f(N), where f (f: ℝS

→ ℝ
S) is an unknown 

nonlinear model and N =
[
N1, … ,NS

]⊤
 is the vector of 

species abundances (Cenci & Saavedra,  2019). At any 
given time, the community can be affected by a pulse 
perturbation p =

[
p1, … , pS

]⊤
 that changes N into Ñ (i.e. 

Ñ = N + p) (Bender et al., 1984). The vector Ñ would then 
change in time according to f. Following similar defini-
tions in ecology, we conceptually define sensitivity as the 
amount of change in species abundances following a per-
turbation (Dakos, 2018; Domínguez-García et al., 2019). 
Mathematically, we define the sensitivity of species i to a 
specific perturbation p from time t to t + k as the squared 
difference between its perturbed and unperturbed abun-
dance at the time t + k in relation to the initial squared 
difference caused by the perturbation at the time t:

Therefore, si quantifies the distance between perturbed 
and unperturbed states over time, similarly to measures of 
sensitivity to initial conditions (Eckmann & Ruelle, 1985; 

Strogatz, 2018; Vallejo et al., 2017). However, si is completely 
dependent on p. In natural communities, we typically have 
no prior information about the direction and magnitude of 
p—that is, there is large uncertainty about how much each 
species will be affected by a perturbation. To quantify spe-
cies sensitivity in a way that embraces this uncertainty, we 
focus on a collection of randomly perturbed abundances 
(Arnoldi et al., 2018; Bender et al., 1984). Thus, we define 
the sensitivity of species i from time t to t + k as the average 
squared difference between a set of n randomly perturbed 
abundances and its unperturbed abundance at the time 
t + k in relation to the initial average squared difference 
at the time t:

where Ñ i
(j)
(t) is the jth perturbed abundance of species i 

at time t. The denominator in Equation (2) controls for the 
initial displacement of species abundances but can be ig-
nored if the variance of perturbations is the same for every 
species (SI Section 4). Note that we use ⟨si⟩ as a notation 
for the ratio of the mean squared deviations and that ⟨si⟩ is 
greater than zero but not bounded because the numerator 
may be arbitrarily large.

Under non-equilibrium dynamics, the identity of 
the most and least sensitive species can change over 
time. We illustrate this statement using the following 
3-species food chain model that exhibits chaotic dynam-
ics (Hastings & Powell, 1991) (parameter values given in 
SI Section 3):

where N1, N2 and N3 are the abundances of the primary 
producer, primary consumer, and secondary consumer, 
respectively. To study species sensitivities under this 
model, we numerically integrate Equation  (3) producing 
time series (Figure 1a,b) that can be visualized as an at-
tractor in state space (Figure  1c,d). Then, we perform a 
small arbitrary pulse perturbation p to species abundances 
at the time t (orange vertical line in Figure 1a,b) and com-
pute species sensitivities to it 

(
si
)
 after k = 1 time step (red 

vertical line in Figure 1a,b). We use k = 1 as an example 
here, but explore the effects of changing this time step 
in our analyses. Figure  1a,b shows that even under the 
same perturbation p, species exhibit drastically different 
sensitivities depending on when the perturbation occurs. 
That is, the species that has the largest sensitivity to this 

(1)si =

[
Ñ i(t+k)−Ni(t+k)

]2
[
Ñ i(t)−Ni(t)

]2 =
pi(t+k)

2

pi(t)
2

.

(2)

⟨si⟩ =
1

n

∑n

j=1

�
Ñ

(j)

i
(t+k)−Ni(t+k)

�2

1

n

∑n

j=1

�
Ñ

(j)

i
(t)−Ni(t)

�2 =

1

n

∑n

j=1
p
(j)

i
(t+k)2

1

n

∑n

j=1
p
(j)

i
(t)2

,

(3)

dN1

dt
= rN1

(
1−

N1

K

)
−
a1N1N2

1+b1N1
dN2

dt
= −sN2+hN1N2−

a2N2N3

1+b2N2
dN3

dt
= − lN3+nN2N3,
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4  |      DETECTING SENSITIVE SPECIES

particular perturbation can change from the primary (spe-
cies 2 in Figure 1a) to the secondary consumer (species 3 
in Figure 1b) after a short time. Next, we extend this il-
lustration and consider how multiple randomly perturbed 
abundances (Ñ(t), orange points in Figure  1c,d) change 
after one time step (Ñ(t + 1), red points in Figure 1c,d) by 
computing species sensitivities (⟨si⟩). Figure 1c,d confirms 
that the most sensitive species changes from the primary 
(species 2 in Figure 1c) to the secondary consumer (species 
3 in Figure  1d) under random perturbations. Therefore, 
the problem we aim to solve in this study is how to predict 
the order of the ⟨si⟩ values of all species in a community at 
any given time. Clearly, in natural communities, we cannot 
produce multiple random perturbations to compare the re-
sponses of different species in perturbed and unperturbed 
communities. Therefore, in what follows, we provide a 

rationale for using the Jacobian matrix at time t to predict 
the order of ⟨si⟩.

RA N K ING SPECIES SENSITIVITIES 
TO PERTU RBATIONS

Without loss of generality, we can write the linearized dy-
namics of a small perturbation on abundances as dp

dt
= Jp , 

where J is the Jacobian matrix of f evaluated at N (SI 
Section 1) (Boyce et al., 2017; Eckmann & Ruelle, 1985; 
Mease et al.,  2003; Strogatz,  2018). Following results 
from dynamical systems theory (Arnoldi et al.,  2018; 
Boyce et al., 2017; Strogatz, 2018), we propose two com-
plementary approaches to rank species according to 
their sensitivity to perturbations (Boxes 1 and 2). These 

F I G U R E  1   Identity of most sensitive species to perturbations changes through time under non-equilibrium dynamics. (a, b) Abundance 
time series generated from a 3-species chaotic food chain model (Equation 3) showing the effect of a pulse perturbation p = [7,7,7]⊤ that 
increases all abundances at different times t. Whereas species 2 (primary consumer, blue) shows the highest sensitivity si to p (i.e. the largest 
squared difference between perturbed and unperturbed abundance at t + 1) in (a), species 3 (secondary consumer, purple) shows the highest 
si to p just a few time steps ahead in (b). (c, d) Chaotic attractor of the food chain model (black) with multiple perturbed abundances around 
N(t) (Ñ(t), orange points) at different times t. The red points show these perturbed abundances after one time step (Ñ(t + 1)). We can measure 
the sensitivity of species i  to random perturbations (⟨si⟩) by computing the average squared difference between its set of perturbed abundances 
(Ñ i(t + 1)) and its unperturbed abundance 

(
Ni(t + 1)

)
 at t + 1. Note that this sensitivity measure is normalized by the average squared difference 

between Ñ i(t) and Ni(t) at time t (Equation 2). Whereas species 2 shows the highest ⟨si⟩ in (c), species 3 shows the highest ⟨si⟩ in (d).
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      |  5MEDEIROS et al.

approaches are based on the assumption that if J is nearly 
constant from time t to t + k, the solution p(t + k) of the 
linearized dynamics provides a good approximation of 
how perturbed abundances change over this time period. 
Thus, in addition to the challenge of approximating a 
nonlinear system (i.e. f(N)) by its linearized dynamics, 
here we explore the extent to which the linearized dy-
namics inform us about species sensitivities under non-
equilibrium dynamics (i.e. when J is state-dependent). 
Importantly, we use information from the Jacobian ma-
trix (i.e. community-level information) to measure how 
individual species respond to perturbations.

We illustrate how �
(
si
)
 (Box 1) and ∣ v1i ∣ (Box 2) allow 

us to predict the order of ⟨si⟩ under three simple sce-
narios of Lotka-Volterra dynamics at equilibrium (SI 
Section  13). These examples contain an unstable equi-
librium point—that is, J evaluated at N∗ has at least one 
𝜆i > 0, as is typically observed for points along a non-
equilibrium attractor (e.g. limit cycle, chaotic attractor). 
We show that the order of �

(
si
)
 is exactly the same as 

the order of ⟨si⟩, whereas the order of ∣ v1i ∣ is similar to 
the order of ⟨si⟩ for all three scenarios (Figures S1–S3). 
A potential limitation of these approaches, however, is 
that they rely on a parameterized model (f) to obtain J, 

which we rarely have. Therefore, in addition to comput-
ing �

(
si
)
 and ∣ v1i ∣ using the analytical J, we show that we 

can accurately rank ⟨si⟩ by inferring J using the S-map. 
The S-map is a locally weighted state-space regression 
method that has been shown to provide accurate infer-
ences of the time-varying Jacobian matrix from time se-
ries (Cenci et al., 2019; Deyle et al., 2016; Sugihara, 1994) 
(SI Section 5).

TESTING RA N K ING APPROACH ES 
W ITH SY NTH ETIC TIM E SERIES

To test whether the order of expected sensitivities (�
(
si
)
 ; 

Box  1) and eigenvector alignments (∣ v1i ∣; Box  2) can 
predict the order of species sensitivities (⟨si⟩), we per-
form perturbation analyses using synthetic time series. 
Specifically, we generate multivariate time series with 
500 points ({N(t)}, t = 1, … , 500) using five population 
dynamics models that produce non-equilibrium dynam-
ics (Figure S5; SI Section 3). Then, for half of each time 
series (t = 250, … , 500), we perform n = 300 random per-
turbations at each time t: Ñ = N + p, where p ∼

(
0,�t

)
 

with �t being a diagonal matrix with diagonal element i 

BOX 1  Expected sensitivity ranking

Rationale
This approach is based on analytically computing an expected value for the sensitivity of species i to perturba-
tions (�

(
si
)
) using the solution p(t + k) = eJkp(t) of the linearized dynamics (SI Section 2) (Boyce et al., 2017). 

Note that, for sufficiently small perturbations under equilibrium dynamics, this solution is exact because J is 
constant when evaluated at an equilibrium point (N∗ for which f

(
N∗

)
= 0). By assuming that p(t) follows a dis-

tribution with mean zero, we can obtain �
(
si
)
 at time t from the covariance matrix of p(t + k): �t+k = eJk�t

(
eJk

)⊤

, where �t is the covariance matrix of p(t). A distribution with a mean zero for p(t) represents the most unin-
formative case where all perturbation directions (i.e. which species are most impacted) are equally likely to 
occur. Thus, the distribution of perturbed abundances (Ñ) described by �t will approximate �t+k after k time 
steps (Figure 2a). Then, we can compute the expected sensitivity of species i as: �

(
si
)
= �2

i,t+k, where �2
i,t+k

 is 
the ith diagonal element of �t+k (i.e. the variance of pi(t + k)). We define the order of �

(
si
)
 values across spe-

cies as the expected sensitivity ranking and use it to predict the order of species sensitivities to perturbations  
(⟨si⟩; Figure 2a).
Application
Three ingredients are required to apply the expected sensitivity ranking. First, we need the Jacobian matrix of 
the community (J) evaluated using the abundances (N) at time t. This matrix can be computed directly from 
a parameterized population dynamics model (SI Section 1) or, as we focus here, inferred from the time series 
without assuming a specific model (SI Section 5). Second, we need to define an initial covariance matrix of 
perturbations at time t (�t). Without any knowledge of perturbations, we suggest an uninformative approach 
by setting �t = I, where I is the identity matrix (i.e. perturbations to each species are independent of each 
other). Finally, we need to specify the time for which perturbations evolve (k) on the time unit of the time series 
(e.g. day, month). Because information on the local time scale of the dynamics can be challenging to obtain, 
we suggest using a small value for k to investigate short-term species sensitivities (e.g. k = 1). Alternatively, it 
is possible to set k to be inversely proportional to the local rate of change calculated from the time series (SI 
Section 4). In conclusion, although this approach has the advantage of using the information on the entire 
Jacobian matrix to compute �

(
si
)
, it has the disadvantage of requiring additional information that may be 

hard to obtain in natural communities (�t and k).
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6  |      DETECTING SENSITIVE SPECIES

F I G U R E  2   Ranking species sensitivities to perturbations. (a) Illustration with two species showing the expansion of perturbed abundances 
(Ñ(t), orange points) after k time steps (Ñ(t + k), red points). The expected sensitivity of species i  to perturbations (�

(
si

)
) can be computed 

as the corresponding variance of the predicted distribution of perturbations (i.e. ith diagonal element of covariance matrix �t+k depicted in 
black). Note that �t+k is shown at time t as it is computed using only information at that time point. We propose that the order of �

(
si

)
 values 

can be used to predict the order of species sensitivities to perturbations (⟨si⟩ values). Alternatively, the order of species alignments with the 
leading eigenvector of the Jacobian matrix ( ∣ v1i ∣ values) can be used to predict the order of ⟨si⟩ values. (b) for the 3-species food chain model 
(Equation 3) at a given time, there are six possible ways to rank ⟨si⟩ values, each one giving a Spearman's rank correlation value (�). (c) Rank 
correlation (�) between �

(
si

)
 (computed analytically from the model) and ⟨si⟩ over time quantified for a synthetic time series generated from the 

3-species food chain model. The vast majority of points (97.2%) show a positive �. (d) Same as (c) but with the Jacobian matrix used to compute 
�
(
si

)
 inferred with the S-map using only past time-series data. Again, the great majority of points (94.8%) show a positive �.
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      |  7MEDEIROS et al.

given by �2
i,t
= r2 (i.e. independent normally distributed 

perturbations for each species with the same variance r2 ).  
We set r to be 15% of the mean standard deviation of spe-
cies abundances, but relax this assumption in additional 
analyses (SI Section 4). Next, we numerically integrate 
the model f for a time k using each Ñ as an initial con-
dition. Because the response of communities to pertur-
bations can depend on the time scale of the dynamics 
(Hastings et al., 2018; Rinaldi & Scheffer, 2000), we set k 
to be inversely proportional to the mean rate of change 
of the dynamics (SI Section  4). Then, we compute ⟨si⟩ 
from time t to t + k as well as �

(
si
)
 and ∣ v1i ∣ using J at 

time t as described in Boxes 1 and 2. We compute �
(
si
)
 

and ∣ v1i ∣ both analytically from the true J evaluated at 
N and by sequentially inferring J with the S-map on 250 
past points.

To assess how well the order of �
(
si
)
 and ∣ v1i ∣ predicts 

the order of ⟨si⟩, we compute the Spearman's rank cor-
relation (�) between each ranking and ⟨si⟩ at each time t .  
We focus on predicting the order instead of the exact 
values of ⟨si⟩ for two reasons. First, the exact values of 
⟨si⟩ depend on the initial covariance matrix �t and on 
the time step k, which we rarely know for natural com-
munities. Second, we can only infer an approximation 
of J with the S-map even from ideal time-series data (SI 
Section 5; Cenci & Saavedra, 2019). We can illustrate our 

ranking procedure for �
(
si
)
 by considering the 3-species 

food chain model (Figure 1; Equation 3). With 3 species, 
there are 6 possible ways to rank a given set of ⟨si⟩ at any 
given time, resulting in 4 different � values (Figure 2b). 
If the order of �

(
si
)
 matches the order of ⟨si⟩ exactly, we 

obtain � = 1 (Figure 2b). Otherwise, � decreases depend-
ing on the mismatch between the order of �

(
si
)
 and the 

order of ⟨si⟩. An advantage of using � is that it allows 
us to penalize prediction mistakes consistently, irrespec-
tive of whether the mistaken species are amongst the 
most or least sensitive ones. For example, in Figure 2b, 
the second and third rankings have 

�(si)

 because both 
contain one correct prediction, which is the least sensi-
tive species and the most sensitive species, respectively. 
Under the 3-species food chain model, we find that the 
order of 

�(si)

 matches the order of ⟨si⟩ exactly (i.e. � = 1 ; 
Figure  2c) for 48.8% of points in the time series. For 
another 48.4% of points, the order of �

(
si
)
 allows us to 

correctly detect the position of either the least or most 
sensitive species (i.e. � = 0.5). Finally, for 2.8% of points, 
the order of �

(
si
)
 is not a good predictor of the order of 

⟨si⟩ (i.e. 𝜌 < 0). But most strikingly, we obtain very similar 
results when inferring �

(
si
)
 directly from the synthetic 

time series using the S-map, without any knowledge of 
the underlying model (Figure  2d). Hence, this illustra-
tion suggests that we can accurately predict the relative 

BOX 2  Eigenvector ranking

Rationale
This approach is based on the alignment of species i with the leading eigenvector (v1) of J ∣ v1i ∣. The solution 
of the linearized dynamics can also be written as p(t + k) =

∑S

i=1
cie

�ikvi, where vi is the real part of the ith 
eigenvector of J, �i is the real part of the ith eigenvalue 

(
�S ≤ ⋯ ≤ �1

)
, and each ci is a constant determined 

by the initial condition p(t) (SI Section 9) (Boyce et al., 2017, Strogatz, 2018). As long as the imaginary parts 
are small compared to real parts, ∣ v1i ∣ can still be used to estimate species sensitivities even under small local 
oscillations caused by complex eigenvalues (SI Section 9). After a sufficient amount of time k, �1 will dominate 
over other eigenvalues and the solution can be approximated by p(t + k) ≈ c1e

�1kv1. Thus, v1 dictates the local 
direction of the greatest expansion (or smallest contraction) of perturbations. That is, the distribution of per-
turbed abundances (Ñ) will expand over time approximately along the direction of v1 and at a rate given by �1 
(positive values lead to expansion, whereas negative values lead to contraction). We also show that v1 serves 
as a proxy for the local leading Lyapunov vector, which provides the exact direction of perturbation growth 
under non-equilibrium dynamics (Kuptsov & Parlitz, 2012; Mease et al., 2003; Vallejo etal., 2017) (Figure S4; 
SI Section 10). Specifically, we compute the alignment of species i with v1 as the absolute value of its ith element 
(∣ v1i ∣), where ‖v1‖ = 1. We define the order of ∣ v1i ∣ values across species as the eigenvector ranking and use it 
to predict the order of ⟨si⟩ (SI Section 11). Note that we use the absolute value because only the line spanned by 
v1 and not its direction determines how perturbed abundances change over time.
Application
Similarly to the expected sensitivity ranking, the Jacobian matrix of the community (J) evaluated using the 
abundances (N) at time t is also required to apply the eigenvector ranking. The main advantage of the eigen-
vector ranking is that J is the only ingredient required to compute ∣ v1i ∣ and we do not need to specify the initial 
covariance matrix of perturbations (�t) nor the time for which perturbations evolve (k). Nevertheless, using 
a single eigenvector instead of the entire Jacobian matrix, the eigenvector ranking uses less information than 
the expected sensitivity ranking. Importantly, we show that �

(
si
)
 and ∣ v1i ∣ are related in the special case of a 

symmetric J (SI Section 12), which is also when all eigenvalues of J are real.
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8  |      DETECTING SENSITIVE SPECIES

sensitivity position of most species (i.e. � ≥ 0.5) for the 
vast majority of points in a time series.

To benchmark our approaches, we use two simple 
single-species indicators to predict the order of ⟨si⟩ val-
ues. First, we use abundances absolute percent change 
between t − 1 and t: ΔNi(t) =

|||
Ni (t)−Ni (t−1)

Ni (t−1)

|||. The rationale 
for this indicator is that a species will be more sen-
sitive when its abundance is changing more rapidly. 
Second, we use abundances at time t after a sign rever-
sal: −Ni(t) . This indicator is based on the notion that 
a species will be more sensitive when it has a low abun-
dance, for example, due to density dependence effects. 
For both indicators, we compute the rank correlation 
� between ⟨si⟩ and the indicator at each time t. Note 
that computing ΔNi(t) or −Ni(t) for a given species i 
only requires species-level information (i.e. time se-
ries of species i) and not community-level information  
(i.e. Jacobian matrix) as �

(
si
)
 and ∣ v1i ∣ require.

We demonstrate the generality of our ranking ap-
proaches using the set of five synthetic time series (SI 
Section 3). Although we find a high variation in � over 
time (grey points in Figure 3a), the mean correlation � 
between ⟨si⟩ and �

(
si
)
 as well as between ⟨si⟩ and ∣ v1i ∣ 

is positive and high for all five models when we com-
pute these rankings from the model (horizontal lines in 
Figure  3a). In particular, we find that �

(
si
)
 shows the 

higher accuracy in ranking ⟨si⟩, followed by ∣ v1i ∣, ΔNi(t) , 
and −Ni(t). Note that we focus on � given that � is ex-
pected to vary over time due to changes in nonlinearity 
and rate of change of J. Importantly, we obtain very sim-
ilar results for all models when inferring �

(
si
)
 and ∣ v1i ∣ 

using the S-map (horizontal lines in Figure 3b). In addi-
tion to quantifying prediction accuracy, we can visual-
ize how the value of ⟨si⟩, �

(
si
)
, and ∣ v1i ∣ of each species 

changes over time (Figure S6). We find that, even when 
inferring �

(
si
)
 and ∣ v1i ∣ with the S-map, we are able to 

detect shifts in ⟨si⟩ across species (Figure S6).
Although �

(
si
)
 is in general more accurate than ∣ v1i ∣ , 

we can use information on the leading eigenvalue (�1) to 
increase the accuracy of the latter approach. We expect 
that the higher �1, the greater the local growth rate of 
perturbations in the direction of v1, which should im-
prove our ability to rank ⟨si⟩ using ∣ v1i ∣. For the non-
equilibrium attractors used here, �1 is generally positive, 
whereas subsequent eigenvalues are negative or close to 
zero, implying that �1 alone carries enough information 
to improve the eigenvector approach. Indeed, we find 
that � generally increases for the eigenvector approach 
when using only a subset of points with a high value of �1 
(Figure S7). We also find a positive correlation between 
the analytical and inferred �1 (2-species predator–prey: 
0.52; 3-species food chain: 0.70; 3-species food web: 0.57; 
4-species competitors: 0.23; and 5-species food web: 0.70) 
and a high alignment between the analytical and inferred 
v1 for all models (Figure S8).

For most models, the expected sensitivity (�
(
si
)
) 

and eigenvector (∣ v1i ∣) approaches computed from the 

analytical J show a high accuracy in ranking species 
sensitivities (⟨si⟩) when using different perturbation dis-
tributions (Figures S9 and S10) or time steps (k) to evolve 
perturbations (Figures S11 and S12; SI Section 4). In par-
ticular, �

(
si
)
 shows an extremely high accuracy when k 

is small and fixed over time (e.g. k = 1; Figure S11), given 
that the solution for the linearized dynamics (p(t + k)) 
is more precise for smaller k. In contrast, we find that 
∣ v1i ∣ performs best when k depends on the time scale 
of the dynamics (Figure  3), given that the eigenvector 
approach depends on the convergence of p(t + k) to 
the line spanned by v1, which requires a larger k when 
dynamics are slower. We also find that the accuracy of 
�
(
si
)
 computed using wrong values of k and �t remains 

high (Figures S10 and S13), except when these values are 
greatly misspecified (Figure S14). Finally, although the 
accuracy decreases in some cases, we find that �

(
si
)
 and 

∣ v1i ∣ inferred with the S-map remain accurate when nor-
malizing species abundances (Figure S15), using shorter 
time series (Figure  S16), adding observational noise to 
the time series (Figure S17) or adding process noise to 
the model (Figure S18; SI Section 6).

DETECTING SENSITIVE SPECIES 
IN EM PIRICA L TIM E SERIES

To illustrate the implementation of our data-driven ap-
proaches, we apply them to rank species sensitivities 
(Boxes 1 and 2) using two empirical time series. Each 
time series depicts a different marine community with 
four interacting variables that have been shown to ex-
hibit non-equilibrium dynamics (SI Section  7; Benincà 
et al.,  2009, 2015). Note that some variables represent 
physical attributes (e.g. bare rock) and others consist of 
species aggregations (e.g. barnacles) but we use the term 
species to refer to all variables. We first fit the S-map 
sequentially to both time series to infer �

(
si
)
 and ∣ v1i ∣ 

(SI Section  7). Because we do not know the governing 
population dynamics in these communities (i.e. f(N)), 
we cannot compute ⟨si⟩. Instead, we perform abundance 
forecasts using a Long Short-Term Memory (LSTM) 
neural network (James et al., 2021) and test the hypoth-
esis that species that are more sensitive to perturbations 
(i.e. have a higher value of �

(
si
)
 or ∣ v1i ∣) at a given time 

will be harder to forecast. That is, for a community 
under perturbations, the LSTM neural network will not 
be able to accurately forecast the abundance of a given 
species at a point in time when that species is highly sen-
sitive to perturbations (Cenci et al., 2020). Both empirical 
communities described above are thought to be under 
perturbations triggered by changes in environmental 
conditions (Benincà et al., 2009, 2015).

For both the Jacobian matrix inference (i.e. S-map) 
and the forecasts (i.e. LSTM neural network), we assign 
70% of the data as a training set and use the remain-
ing 30% as a test set. For each time t in the test set, we 
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      |  9MEDEIROS et al.

compute a standardized forecast root-mean-square error 
(RMSE) for each species i as (Perretti et al., 2013):

where � = 3 is the number of forecasts, the numerator is the 
RMSE for the LSTM neural network forecast (N̂ i(j)), and 
the denominator is the RMSE for a naive forecast using the 

last point in the current training set (Ni(t − 1)). We then 
compute the rank correlation (�) between �

(
si
)
 and �i as 

well as between ∣ v1i ∣ and ϵi at each point in the test set to 
test the hypothesis that our rankings can predict the order 
of forecast errors. We also compute the rank correlation 
between each of the two alternative indicators previously 
described (ΔNi(t) and −Ni(t)) and ϵi to verify whether 
these single-species indicators can predict the order of 
forecast errors. Because we do not know how perturba-
tions affect these communities, we set �t = I and k = � to 
compute �

(
si
)
 (Box 1). We confirm the rationale behind 

(4)�i =

�
1

�

∑t+�−1

j=t

�
Ni(j)−N̂ i(j)

�2

�
1

�

∑t+�−1

j=t

�
Ni(j)−Ni(t−1)

�2
,

F I G U R E  3   Expected sensitivity and eigenvector approaches allow us to accurately rank species sensitivities to perturbations under 
several population dynamics models. (a) Rank correlation (�) between species sensitivities to perturbations (⟨si⟩) and four different approaches 
(expected sensitivity, �

(
si

)
; eigenvector, ∣ v1i ∣; rate of change, ΔNi(t); and abundance, − Ni(t)). Note that the Jacobian matrix and, therefore, �

(
si

)
 

and ∣ v1i ∣ are computed analytically from the model. Each panel shows the percentage of points with a given � value (size of grey points) and the 
average of these values across time (�, black horizontal lines) for a synthetic time series generated from the corresponding population dynamics 
model. (b) Same as (a) but with the Jacobian matrix and, therefore, �

(
si

)
 and ∣ v1i ∣ inferred with the S-map using only past time-series data. In 

(a), the expected sensitivity approach shows a higher � than the other three ranking approaches under all models. In (b), the expected sensitivity 
approach outperforms the eigenvector approach for three out of five models.
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10  |      DETECTING SENSITIVE SPECIES

our hypothesis by performing forecasts under perturba-
tions with the five models used in our theoretical analyses 
(Figure S19; SI Section 8).

We first illustrate our approaches to detect sensitive 
species with a rocky intertidal community. We find that 
barnacles have the highest expected sensitivity (�

(
si
)
 ) 

followed by either algae or mussels depending on the 
point in time (Figure 4a and Figure S20). Interestingly, 
barnacles also show the highest alignment with the 
leading eigenvector (∣ v1i ∣) for the majority of points 
in time (Figure  S20). We also find consistent results 
for �

(
si
)
 and ∣ v1i ∣ with a marine plankton community 

(Figures  S20 and S21). Thus, although the values of 
�
(
si
)
 over time are different from those of ∣ v1i ∣, these 

two complementary approaches suggest some general 
patterns in how species sensitivities change over time 
in these two communities. Importantly, we find that 
the mean rank correlation � between �

(
si
)
 and ϵi is 

positive for both time series, but only significant for 
one of them (rocky intertidal community: � = 0.04, 
p-value  =  0.287, 1000 randomizations; marine plank-
ton community: � = 0.23, p-value <0.001; Figure  4b). 
However, we find that the mean rank correlation � be-
tween ∣ v1i ∣ and ϵi is positive and significant for both 

F I G U R E  4   Species abundance forecast errors are associated with species sensitivities to perturbations. (a) Time series of a rocky intertidal 
community containing four variables (bare rock, barnacles, algae, and mussels). The diagram on the right depicts the cyclic succession in this 
community (adapted from Benincà et al., 2015). Note that percentage of cover does not necessarily sum to 100% as individuals of different 
species may overlap on top of the rock. We use a moving training set (grey region) to train the S-map and compute expected sensitivities (�

(
si

)
)  

as well as species alignments with the leading eigenvector (∣ v1i ∣) at the last point in the training set. Simultaneously, we train an LSTM neural 
network to forecast species abundances and compute species forecast errors (ϵi). Barnacles (blue) show the highest value of �

(
si

)
 followed by 

either algae (green) or mussels (purple) depending on the point in time. Note that �
(
si

)
 values across species sum to 1 for each point in time 

(darker points denote higher �
(
si

)
). (b) Rank correlation (�) between ϵi and four different approaches (expected sensitivity, �

(
si

)
; eigenvector, 

∣ v1i ∣; rate of change, ΔNi(t); and abundance, − Ni(t)). Each panel shows the percentage of points with a given � value (size of grey points) and 
the average of these values over the test set (�, black horizontal lines) for a given empirical time series (asterisks denote a p-value less than 0.05 
for � according to a randomization test). (c) Average correlation (�) between ϵi and the different ranking approaches computed for points in the 
test set with a �1 value higher than a given percentile of the �1 distribution. For the expected sensitivity and eigenvector approaches, � increases 
as we only use points with successively higher values of �1 for both time series (asterisks denote a p-value less than 0.05 for � using the 50th 
percentile). Pictures are under the creative commons Licence: Rock by Piotr Zurek, barnacles by tangatawhenua, algae by redrovertracy, and 
mussels by Wayne Martin.

(a)

(b) (c)
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      |  11MEDEIROS et al.

time series (rocky intertidal community: � = 0.13, 
p-value = 0.023; marine plankton community: � = 0.26, 
p-value <0.001; Figure 4b).

We find further evidence that species with higher �
(
si
)
 

or ∣ v1i ∣ are harder to forecast by computing � only for 
points in the test set with successively higher values of �1 
(i.e. higher local growth rate of perturbations; Figure 4c). 
For example, as expected from our analyses with synthetic 
time series (Figure S7), � between ∣ v1i ∣ and ϵi increases 
for both time series when we only use points for which �1 
is higher than its 50th percentile (rocky intertidal com-
munity: � = 0.19, p-value = 0.021; marine plankton com-
munity: � = 0.45, p-value <0.001; Figure 4c). The fact that 
� does not increase in general by using only points with a 
high �1 for the alternative indicators (ΔNi(t) and −Ni(t)) 
supports our ranking approaches in linking species fore-
cast errors to their sensitivities (Figure 4c). We find these 
results to remain similar when changing the size of the 
training set and the number of steps ahead (�) to forecast 
(Figures S22–S24) as well as to normalize species abun-
dances before performing the S-map (Figure S25).

DISCUSSION

Understanding how individual species affect the re-
sponse to perturbations of the whole community and, in 
turn, how species interactions at the community level af-
fect the responses of individual species is paramount to 
ecological management and conservation (Beauchesne 
et al., 2021; Clark et al., 2021; Kéfi et al., 2019; Levin & 
Lubchenco, 2008). Yet, the traditional focus of ecology 
on recovery to equilibrium using parameterized models 
has hampered efforts to understand how species respond 
to perturbations when community dynamics are out of 
equilibrium. Here, we introduce a data-driven frame-
work to solve a previously unexplored problem: how to 
rank the species that compose a community according to 
their sensitivity to small pulse perturbations under non-
equilibrium dynamics? Our findings provide three main 
insights into how communities and their constituent spe-
cies respond to perturbations.

First, we show that information on the time-varying 
local effects between interacting species (i.e. Jacobian 
matrix) can be used to determine which species will 
be most affected by perturbations at a given time. In 
particular, using dynamical systems theory (Arnoldi 
et al., 2018; Mease et al., 2003; Strogatz, 2018) and non-
linear time series methods (Cenci et al.,  2019; Deyle 
et al., 2016; Sugihara, 1994), we develop two complemen-
tary approaches that can accurately rank species from 
most to least sensitive to small perturbations on abun-
dances under non-equilibrium dynamics. Both the ex-
pected sensitivity and the eigenvector ranking allow us 
to detect which of the species that compose a natural 
community are the most and least sensitive in real time if 
a long-time series is available. Hence, it may be possible 

to inform management and conservation programs re-
garding which species are currently the most sensitive 
ones. Our measure of sensitivity uses community-level 
information to quantify the likelihood of large changes 
(either decreases or increases) in the abundance of a given 
species. Therefore, species sensitivities may complement 
indicators that estimate single-species vulnerability to 
perturbations (Caswell, 2000; Mace et al., 2008; Morris 
& Doak,  2002). That is, whilst some species obviously 
require constant monitoring due to a high extinction risk 
(Dirzo et al., 2014; Estes et al., 2011), other species may 
require more attention during periods of time when they 
have a high sensitivity, irrespective of their abundance. 
Our results, however, cannot be extrapolated beyond 
a given studied community as our framework uses in-
formation on that specific community to rank species 
sensitivities.

Importantly, the expected sensitivity ranking is more 
accurate than the eigenvector ranking for most of our 
perturbation analyses with synthetic time series. In 
particular, the expected sensitivity ranking has its best 
performance when the time over which perturbations 
evolve (k) is small and fixed, and its worse performance 
when the covariance matrix of perturbations (�t) and 
k are greatly misspecified. In contrast, the eigenvec-
tor ranking has the advantage of not depending on �t 
and k for its computation and has its best performance 
when k depends on the local time scale of the dynamics. 
Indeed, in communities under non-equilibrium dynam-
ics, large differences in time scale and, therefore, in the 
time it takes for perturbation effects to appear are wide-
spread (Hastings et al., 2018; Rinaldi & Scheffer, 2000; 
Strogatz, 2018). Thus, it is reasonable to expect that as a 
practical tool the heuristic eigenvector ranking may be 
as useful as the more theoretically complete but assump-
tion bound expected sensitivity ranking.

Second, we find support for our hypothesis that the 
abundance forecast errors for the different species in a 
community are associated with their sensitivity to per-
turbations. The predictability of ecological dynamics 
is known to change across communities (Dietze,  2017; 
Pennekamp et al.,  2019) and, for a single community, 
across time (Cenci et al., 2020). In particular, it has been 
shown that at points in time when a community is more 
sensitive to perturbations its local predictability can be 
lower and, therefore, the average abundance forecast 
error can be higher (Cenci et al.,  2020). Here, we have 
extended this result for individual species by showing 
that the local predictability of a given species is associ-
ated with its sensitivity to perturbations, which we infer 
through its expected sensitivity and its alignment with 
the leading eigenvector. The fact that the correlation 
between forecast errors and our ranking approaches 
strengthens when the leading eigenvalue is high (i.e. 
perturbations grow rapidly along a given direction in 
state space) further supports our hypothesis that species 
forecast errors are associated with their sensitivities. In 
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addition, the better performance with empirical data of 
the eigenvector approach in relation to the expected sen-
sitivity approach suggests that we may be misspecifying 
the information required to compute expected sensitivi-
ties. These results provide empirical support to the lead-
ing eigenvector as a way to detect sensitive species using 
minimal information inferred from time-series data. 
Overall, our findings suggest that sensitivity to pertur-
bations is an additional factor influencing the intrinsic 
predictability of different species in ecological commu-
nities (Dietze, 2017, Pennekamp et al., 2019).

Applying our ranking approaches to empirical data 
requires accurate inference of the Jacobian matrix with 
the S-map. Although the S-map has been shown to 
provide accurate inferences when time series are noisy 
(Cenci et al., 2019; Deyle et al., 2016), several limitations 
remain. Because information on the shape of the attrac-
tor is required to fit the S-map, longer time series with 
smaller amounts of noise improve inference quality, all 
else being equal. In our analyses with synthetic time se-
ries, we show that our ranking approaches remain accu-
rate when using shorter time series (Figure S16) or under 
small amounts of noise (Figures S17 and S18). Long time 
series with a strong signal of non-equilibrium determin-
istic dynamics, such as the rocky intertidal or plank-
ton community investigated here (Benincà et al., 2009, 
2015), are examples of ideal data sets to apply our ap-
proaches. Thus, even if small perturbations are contin-
ually impacting the community (e.g. ongoing process 
noise), if the attractor is not completely distorted, the 
S-map should be able to accurately reconstruct the 
time-varying Jacobian matrix required to compute 
species sensitivities (Cenci et al.,  2019) (Figure  S18). 
Although here we focus on small communities and 
small amounts of noise, future work may combine our 
ranking approaches with recent improvements in the S-
map (e.g. regularization and multiview distance; Cenci 
et al., 2019; Chang et al., 2021) to detect sensitive species 
under more challenging settings.

Finally, we show that approaches based on linear dy-
namical systems that are typically used for communities 
close to equilibrium can also provide information for 
communities under non-equilibrium dynamics (Cenci 
& Saavedra, 2019; Ushio et al.,  2018). Even though the 
methodology may be similar in both cases, the interpre-
tation is completely different. For instance, whereas the 
linearized dynamics can be used to compute a recovery 
rate under equilibrium (Arnoldi et al.,  2018; Medeiros 
et al.,  2021; Strogatz,  2018), we show that they can be 
used to derive the time-varying expected sensitivity of 
different species to perturbations under non-equilibrium 
dynamics. In addition, we use the leading eigenvector, 
which has been previously employed to decompose com-
munity responses into species responses to perturbations 
under equilibrium dynamics (Dakos,  2018; Ghadami 
et al., 2020; Patterson et al., 2021; Weinans et al., 2019). 
Therefore, the approaches introduced here to increase 

our understanding of how communities and their con-
stituent species respond to perturbations when there is 
no stable equilibrium. Both approaches are based on a 
linearization of the dynamics and, thereby, only pro-
vide an assessment of responses to small perturbations. 
Moreover, both approaches assume that the Jacobian 
matrix does not change much over the time period for 
which perturbations evolve. Improving our framework 
to deal with strong nonlinearities, fast changes in the 
Jacobian matrix and local oscillations due to complex 
eigenvalues are promising avenues for future research. 
As our knowledge of the impact of perturbations on a 
community increases, it might also be possible to incor-
porate biased (e.g. certain species are more impacted) or 
correlated (e.g. certain species are impacted in the same 
way) perturbation distributions into our approaches. 
Overall, our findings illustrate how integrating well-
known results of equilibrium dynamics with data-driven 
methods for non-equilibrium dynamics provides a fruit-
ful avenue for future development and new insights into 
the response of single species and entire communities to 
perturbations.
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1 Derivation of the dynamics of small perturbations1

In this section, we provide a derivation of the linear dynamics of small perturbations, which2

is the foundation of our approaches to rank species sensitivities to perturbations. Let us consider3

the most general form of a population dynamics model for a given species i within a community4

with S species (Case, 2000):5

dNi

dt
= fi(N), (S1)

where Ni is the abundance of species i, N = [N1, ..., NS ]> is the vector of abundances of all6

species, and fi (fi: RS → R) is the function describing how the growth rate of species i depends7

on the abundances of all species. Note that fi also depends on a set of parameters, which we8

consider to be fixed over time. We can write equation (S1) for all species in the community9

as dN
dt = f(N), where dN

dt = [dN1
dt , ...,

dNS
dt ]> and f : RS → RS . See below (Section 3) for some10

examples of population dynamics models of this form.11

In this study, we are interested in ranking species according to their sensitivity to perturba-12

tions, that is, how much their abundance trajectories are expected to change after some time13

following a small random wiggle on abundances. Then, let us consider a random pulse perturba-14

tion p that changes N into Ñ (i.e., Ñ = N + p). Now, we can write the Taylor expansion of dÑ
dt15

around N (Strogatz, 2018):16

dÑ

dt
= f(N) +

∂f

∂Ñ

∣∣∣
Ñ=N

· (Ñ−N) +O(p>p), (S2)

where ∂f
∂N = J is the Jacobian matrix of partial derivatives with jij = ∂fi

∂Nj
. If p is small, we can17

approximate its dynamics by taking just the linear term (i.e., ignoring higher-order terms):18

dÑ

dt
= f(N) +

∂f

∂Ñ

∣∣∣
Ñ=N

· (Ñ−N)

dN

dt
+
dp

dt
=

dN

dt
+ J|Ñ=N · p

dp

dt
= J|Ñ=N · p. (S3)

Thus, as it is known (Boyce et al., 2017, Kuptsov & Parlitz, 2012, Mease et al., 2003, Strogatz,19

2018, Vallejo et al., 2017), the dynamics of a small perturbation p can be approximated by the20

linear equation above called the tangent dynamics of dN
dt . Note that we have not assumed the21

existence of an equilibrium here (i.e., N∗ for which f(N∗) = 0) and, therefore, equation (S3) is22

valid irrespective of whether N is close to equilibrium or not.23

2 Derivation of analytical expected sensitivity24

Here we derive the expected value (E(si); Box 1 in the main text) of the sensitivity si (equa-

tion (1) in the main text) of species i to small perturbations (p) affecting species abundances

(N). We assume that p(t) follows a distribution with mean zero and covariance matrix Σt. We
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assume a distribution with mean zero because unbiased perturbations are the most uninforma-

tive way to consider how perturbations may impact a community. In most of our perturbation

analyses, we assume that p(t) follows a multivariate normal distribution (i.e., p(t) ∼ N (0,Σt)),

but this assumption is not necessary for the derivation below. The linearized dynamics of a

small perturbation is given by dp
dt = Jp (see Section 1) (Boyce et al., 2017, Eckmann & Ruelle,

1985, Mease et al., 2003, Strogatz, 2018). We can obtain the solution for this linear system as

p(t + k) = eJkp(t), where eA =
∑∞

i=1
1
i!A

i is the exponential of matrix A (Arnoldi et al., 2018,

Boyce et al., 2017). By defining M = eJk, we can compute the expected value of p(t+ k):

E[p(t+ k)] = E[Mp(t)]

= ME[p(t)]

= 0. (S4)

Thus, p(t+ k) also follows a distribution with mean zero. In the special case where p(t) follows25

a normal distribution, p(t + k) also follows a normal distribution because Mp(t) is a weighted26

sum of normal distributions.27

Because pi(t) and pi(t + k) have mean zero, the sensitivity of species i can be approximated28

by the ratio of the variance of pi(t+ k) and the variance of pi(t):29

〈si〉 =
1
n

∑n
j=1 p

(j)
i (t+ k)2

1
n

∑n
j=1 p

(j)
i (t)2

=
Var[pi(t+ k)]

Var[pi(t)]
, (S5)

where n is the number of random perturbations and Var[pi(t)] = σ2i,t is the ith diagonal element

of Σt. Assuming that σ2i,t is the same for every species i, we can ignore it for the purpose of

ranking species sensitivities and focus only on Var[pi(t + k)]. We can obtain Var[pi(t + k)] by

computing the covariance matrix of p(t+ k):

Σt+k = E[p(t+ k)p(t+ k)>]

= E[(Mp(t))(Mp(t))>]

= ME[p(t)p(t)>]M>

= MΣtM
>. (S6)

Therefore, we define the expected sensitivity of species i at time t as: E(si) = Var[pi(t + k)] =30

σ2i,t+k, where σ2i,t+k is the ith diagonal element of Σt+k. Note that we can normalize E(si) by31

dividing it by
∑S

i=1 σ
2
i,t+k, which has been shown to correspond to the expected magnitude of32

p(t+k) (i.e., E[||p(t+k)||2]) (Arnoldi et al., 2018). Although this normalization does not change33

the order of E(si) values, it allows us to interpret the normalized E(si) as the relative contribution34

of species i to the expected magnitude of p(t+ k).35

In addition to knowing J, knowledge of Σt and k is required to compute E(si). In our main36

set of perturbation analyses, we compute E(si) using the true value of k used to evolve perturbed37
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abundances but do not use the true value of Σt. Specifically, we set Σt = I, where I is the38

identity matrix. We test the robustness of the expected sensitivity ranking under uncertainty in39

k and Σt in three different ways. First, we compute E(si) using Σt = I when σ2i,t varies over40

time and across species (i.e., normally distributed perturbations with a variance proportional to41

relative species abundances; Fig. S10). Second, we compute E(si) using k = 1 when k varies over42

time (i.e., k inversely proportional to the local rate of change of the dynamics; Fig. S13). Third,43

we compute E(si) as described above for our main set of analyses but add 100% of normally44

distributed noise to Σt and k at each point in time (Fig. S14).45

3 Synthetic time series from population dynamics models46

To test whether expected sensitivities (E(si); Box 1 in the main text) and species alignments47

with the leading eigenvector (|v1i|; Box 2 in the main text) can accurately rank species sensitivities48

to perturbations (〈si〉, equation (2) in the main text), we perform perturbation analyses using49

synthetic time series. We generate synthetic time series using five different population dynamics50

models with the generic form: dN
dt = f(N), where f : RS → RS is a nonlinear function. Here, we51

present the equations, parameter values and references for each model.52

The first model contains two species and depicts the interactions between a predator (species53

1) and its prey (species 2), producing a limit cycle (Yodzis, 1989) (Fig. S5):54

dN1

dt
= kN1

( aN2
2

1 + ahN2
2

)
− dN1

dN2

dt
= rN2

(
1− N2

K

)
−N1

( aN2
2

1 + ahN2
2

)
, (S7)

where k = 0.5 a = 0.002, h = 4, d = 0.1 r = 0.5, and K = 100.55

The second model contains three species and depicts a food chain with a primary producer56

(species 1), a primary consumer (species 2), and a secondary consumer (species 3), producing57

chaotic dynamics (Hastings & Powell, 1991, Upadhyay, 2000) (Fig. 1 in the main text and Fig.58

S5):59

dN1

dt
= rN1

(
1− N1

K

)
− a1N1N2

1 + b1N1

dN2

dt
= −sN2 + hN1N2 −

a2N2N3

1 + b2N2

dN3

dt
= −lN3 + nN2N3, (S8)

where r = 4.3, K = 50, a1 = 0.1, b1 = 0.1, a2 = 0.1, b2 = 0.1, s = 1, h = 0.05, l = 1, and60

n = 0.03.61

The third and fourth models have the general form of the classic Lotka-Volterra model (Case,62
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2000):63

dNi

dt
= Ni

(
ri +

S∑
j=1

aijNj

)
(S9)

where ri is an element of the vector r representing the intrinsic growth rate of species i and aij is64

an element of the interaction matrix A representing the interaction effect of species j on species65

i. The third model contains three species (S = 3) and produces chaotic dynamics between two66

prey and one predator (Gilpin, 1979) (Fig. S5) with the following values for ri and aij :67

r =


1

1

−1

 , A =


−0.1 −0.1 −1

−0.15 −0.1 −0.1

0.5 0.05 0


The fourth model contains four competitor species (S = 4) and also produces chaotic dynamics68

(Vano et al., 2006) (Fig. S5) with the following values for ri and aij :69

r =


1

0.72

1.53

1.27

 , A =


−1 −1.09 −1.52 0

0 −1 −0.44 −1.36

−2.33 0 −1 −0.47

−1.21 −0.51 −0.35 −1


Finally, the fifth model depicts a 5-species food web with two secondary consumers (species70

1 and 2), two primary consumers (species 3 and 4), and one primary producer (species 5) also71

generating chaotic dynamics (Deyle et al., 2016) (Fig. S5):72

dN1

dt
= ν1λ1

N1N3

N3 +N∗3
− ν1N1

dN2

dt
= ν2λ2

N2N4

N4 +N∗4
− ν2N2

dN3

dt
= µ1κ1

N3N5

N5 +N∗5
− ν1λ1

N1N3

N3 +N∗3
− µ1N3

dN4

dt
= µ2κ2

N4N5

N5 +N∗5
− ν2λ2

N2N4

N4 +N∗4
− µ2N4

dN5

dt
= N5

(
1− N5

K

)
− µ1κ1

N3N5

N5 +N∗5
− µ2κ2

N4N5

N5 +N∗5
, (S10)

where ν1 = 0.1, ν2 = 0.07, λ1 = 3.2, λ2 = 2.9, N∗3 = 0.5, N∗4 = 0.5, µ1 = 0.15, µ2 = 0.15,73

κ1 = 2.5, κ2 = 2, N∗5 = 0.3, and K = 1.2.74

For each model, we numerically integrate the dynamics using a Runge-Kutta method with a75

time step of 0.05 and obtain a time series with 10,000 points. Then, we sample equidistant points76

obtaining a final multivariate time series with 500 points ({N(t)}, t = 1, ..., 500). Note that with77

this protocol we obtain time series that fully sample the attractor of each model and have a size78
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similar to the empirical time series used here (Fig. S5). Also note that by sampling equidistant79

points we test the robustness of the S-map to infer E(si) and |v1i| under the typical low sampling80

frequency of empirical time series.81

4 Perturbation analyses82

For each synthetic time series, we perform random perturbations on abundances to compute83

species sensitivities (〈si〉; equation (2) in the main text). We apply n = 300 random pulse84

perturbations p to the abundance vector N at each point in time: Ñ = N+p. We perform these85

perturbations in three different ways. First, we assume perturbations are normally distributed86

around N and use pi(t) ∼ N (µ = 0, σ2 = r2) (Fig. 1c, d in the main text). Second, we87

assume perturbations are uniformly distributed around N and apply p(t) such that Ñ is uniformly88

distributed inside a hypersphere of radius r centered in N. Third, we assume normally distributed89

perturbations with a variance proportional to relative species abundances, such that: pi(t) ∼90

N (µ = 0, σ2 = N ′i(t)r
2), where N ′i(t) = Ni(t)∑S

i=1Ni(t)
. Note that in this last scenario we relax91

our assumption that the variance of pi(t) is fixed over time and equal for every species. For all92

types of perturbation, we set r to be 15% of the mean standard deviation of species abundances:93

r = 0.15 1
S

∑S
i=1 σNi , where σNi is the standard deviation of Ni for the whole time series. The94

results for normally distributed perturbations are presented in the main text (Fig. 3), whereas95

the results for the other perturbation types are shown in Figs. S9 and S10.96

After applying perturbations, we numerically integrate model f for k time steps using each97

perturbed abundance vector Ñ as well as the unperturbed abundance vector N as initial condi-98

tions. Then, we compute 〈si〉 using the initial (i.e., time t) and final (i.e., time t+ k) perturbed99

and unperturbed abundances (equation (2) in the main text). Because dN
dt (i.e., local rate of100

change) can greatly vary across state space, impacting how perturbations grow over time, we set101

k to be inversely proportional to the mean absolute percent change between Ni(t+ 1) and Ni(t).102

Specifically, we use k =
[
1
S

∑S
i=1

∣∣∣Ni(t+1)−Ni(t)
Ni(t)

∣∣∣]− 1
2
. Thus, k increases as the percent change103

decreases and we use a square root to damp the large variability in local rate of change found104

for most models. We also perform these analyses using a fixed value of k (k = 1 or k = 3) for105

all points in the time series (Figs. S11 and S12). Note that k = 3 can be considered a long time106

period for some models, allowing us to test the robustness of our approaches for longer periods107

of time.108

5 Inference of Jacobian matrix with the S-map109

We perform the S-map using the rEDM package in R to sequentially infer the Jacobian matrix110

(J) through time using only past time-series data in order to compute expected sensitivities (E(si))111

and species alignments with the leading eigenvector (|v1i|). The S-map is a locally weighted state-112

space regression method that can be used to infer the time-varying Jacobian matrix of a dynamical113

system (Cenci et al., 2019, Deyle et al., 2016, Sugihara, 1994). Given a time series ({N(t)},114
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t = 1, ..., T ), we can fit a linear regression of the following form: Ni(t+ 1) = ci0 +
∑S

j=1 cijNj(t).115

Note that cij = ∂Ni(t+1)
∂Nj(t)

is a discrete-time approximation of the Jacobian matrix element jij .116

The S-map consists of performing this linear regression locally for a given target point N(t∗) by117

giving a stronger weight to points that are closer to it in state space. This is done by finding a118

solution for c in b = Ac, where bt = wtNi(t+ 1), atj = wtNj(t), wt = exp
[
− θ ||N(t)−N(t∗)||

d

]
, and119

d = 1
T

∑T
t=1 ||N(t) −N(t∗)||. Thus, b ∈ RT contains the abundances at t + 1 weighted by the120

relative distance of each point to the target point, A ∈ RT×(S+1) is the weighted data matrix of121

abundances at t, and c ∈ RS+1 estimates the ith row of the Jacobian matrix at N(t∗) as well as an122

intercept term. We obtain the solution for c via singular value decomposition (Deyle et al., 2016),123

which is equivalent to the ordinary least squares solution (Cenci et al., 2019). Importantly, the124

parameter θ tunes how strongly the regression is localized around the target point and is typically125

selected via abundance predictions with leave-one-out cross-validation (LOOCV) (Cenci et al.,126

2019).127

For each of the five synthetic time series, we fit the S-map sequentially to infer J for each128

point in time, which is then used to compute E(si) and |v1i|. To do so, we assign half of the129

time series (i.e., {N(t)}, t = 1, ..., 250) as a training set to select the optimal θ (θ̂) via LOOCV130

by using the S-map to predict species abundances (Cenci et al., 2019). Then, we use θ̂ to fit the131

S-map over the whole training set and infer E(si) and |v1i| at the last point in the training set132

(i.e., t = 250) to rank 〈si〉 values (computed via the perturbation analyses). Next, we add a new133

point to the training set, remove its first point, and repeat the LOOCV and ranking procedures134

until the end of the time series. Note that we keep the size of the training set fixed after each135

update (e.g., t = 2, ..., 251 for the first update), controlling for the effects of time series length136

on the performance of the S-map. Also note that we can only infer the coefficients of J up to a137

constant (Cenci & Saavedra, 2019), so we only consider the direction of the leading eigenvector138

(v1) and the relative value of the leading eigenvalue (λ1) through time.139

Recent improvements of the S-map have been developed to deal with observational and process140

noise as well as with communities with a large number of species (Cenci et al., 2019, Chang et al.,141

2021). Here, we find that the classic S-map as described above (Deyle et al., 2016, Sugihara,142

1994) already provides a very good inference of expected sensitivities (E(si); Box 1 in the main143

text) and eigenvector alignments (|v1i|; Box 2 in the main text). In addition to the performance144

shown in Fig. 3, we show that the classic S-map allows us to accurately predict the order of145

species sensitivities (〈si〉) when normalizing species abundances (Fig. S15), when using shorter146

time series (Fig. S16), when adding observational noise to the time series (Fig. S17), or when the147

model has a stochastic component (i.e., process noise; Fig. S18). Our analyses with short and148

noisy time series are described in the next section (see Section 6). We believe that combining149

our ranking approaches with recent developments of the S-map (Cenci et al., 2019, Chang et al.,150

2021) to deal with large amounts of noise or with communities with a large number of species is151

an exciting direction for future research.152
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6 Analyses with short and noisy synthetic time series153

In our analyses with synthetic time series reported in the main text, we infer the Jacobian154

matrix (J) and, therefore, expected sensitivities (E(si)) and eigenvector alignments (|v1i|) using155

time series with 250 points and without noise. These conditions, however, are rarely observed156

in empirical time series, which are typically much shorter and contaminated with noise (Cenci157

et al., 2019, Sugihara, 1994). In this section, we describe additional analyses with short and noisy158

synthetic time series.159

To test the robustness of our ranking approaches (i.e., using E(si) or |v1i| to rank 〈si〉 over160

time) with shorter time series, we perform the S-map using a smaller training set. Instead of161

using 250 points (e.g., t = 1, ..., 250 in the first training set) as described in the previous section,162

we use only 100 points (e.g., t = 1, ..., 100 in the first training set) to train the S-map and infer163

E(si) and |v1i| at the last point in the training set to predict species sensitivities (〈si〉). Fig. S16164

shows that our results remain similar to the results in Fig. 3b, which use 250 points.165

We also verify the performance of our ranking approaches inferred with the S-map under166

observational noise. To do so, we use the same synthetic time series and perturbation analyses167

as reported in the main text but add normally distributed noise to the time series used to train168

the S-map. That is, for each species i and time t in the training set, we transform Ni(t) into169

Ni(t) +N (µ = 0, σ2 = [δNi(t)]
2), where δ = 0.1 (i.e., 10% of observational noise). Then, we use170

the noisy time series to infer E(si) and |v1i| with the S-map and predict the order of 〈si〉 at each171

point in time. The middle column in Fig. S5 shows the attractors for each population dynamics172

model with observational noise. Fig. S17 shows that, although the mean rank correlation (ρ̄)173

can decrease for some models, our results remain similar to the results in Fig. 3b, which do not174

contain noise.175

We also perform analyses with synthetic time series with process noise. To do so, we generate176

synthetic time series using a modified version of our population dynamics models (equations177

(S7), (S8), (S9), and (S10)). In particular, we transform each deterministic population dynamics178

model dN
dt = f(N) into a model with a stochastic component: dN = f(N)dt + g(N)dW , where179

f(N) is the original deterministic part, g(N) is the stochastic part, and W is a Wiener process.180

We use the simplest form of stochasticity, which consists of independent process noise for each181

species. That is, g(N) is a diagonal matrix with Niδ as the diagonal elements, where δ = 0.03.182

We then use the stochastic version of the models to generate the synthetic time series but use183

the deterministic version (i.e., δ = 0) to evolve perturbed points over time in our perturbation184

analyses (see Section 4). Finally, we inferred our ranking approaches with the S-map using the185

synthetic time series with process noise to predict the order of 〈si〉 over time. The right column186

in Fig. S5 shows the attractors for each population dynamics model with process noise. Fig. S18187

shows that, although the mean rank correlation (ρ̄) can decrease for some models, our results188

remain similar to the results in Fig. 3b.189
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7 Forecast analyses with empirical time series190

We apply our ranking approaches to two empirical time series. Both time series contain191

four interacting variables (hereafter species) and have been shown to exhibit non-equilibrium192

dynamics for long periods of time (Benincà et al., 2015, 2009). The first time series has 251193

points and reports the percentage of cover of barnacles, mussels, crustose algae, and bare rock194

in a pristine rocky intertidal site sampled monthly for 20 years (Benincà et al., 2015) (Fig.195

4a in the main text). The second time series has 794 points and reports the abundance of196

picocyanobacteria, nanoflagellates, rotifers, and calanoid copepods in an experimental mesocosm197

sampled twice a week for 7 years (Benincà et al., 2009) (Fig. S21). Because both time series198

report species abundances on the same scale and unit, we do not normalize species abundances199

before performing the S-map in order to preserve properties of the Jacobian matrix (e.g., sign of200

Jacobian coefficients (Song & Saavedra, 2021); but see Fig. S25).201

For each time series, we test the hypothesis that the order of species sensitivities (E(si))202

and species alignments with the leading eigenvector (|v1i|) should predict the order of species203

standardized forecast errors (εi; equation (4) in the main text). To do so, we fit the S-map to204

compute both rankings and use a Long Short-Term Memory (LSTM) neural network (James205

et al., 2021) to forecast species abundances. Specifically, for each time series, we assign 70%206

of the data as the training set and sequentially infer the Jacobian matrix with the S-map by207

moving the training set forward while keeping its size fixed as described in the previous section.208

In addition, we independently train the LSTM neural network on the training set and forecast209

the abundances of all species for τ = 3 steps ahead (Cenci et al., 2020). Note that we normalize210

species abundances to mean zero and unit standard deviation before training the LSTM neural211

network. Then, we move the training set forward keeping its size fixed, fit the S-map and train the212

LSTM neural network in the new training set, and forecast abundances for τ = 3 steps ahead until213

we reach the end of the time series. Thus, for each time t in the test set (i.e., last 30% of points in214

the time series), we obtain E(si), |v1i| and εi for each species and compute the rank correlation ρ215

between them. Note that neither the S-map nor the LSTM neural network use information from216

abundances outside the current training set for inference and forecasting, respectively. Finally,217

we perform a randomization test to verify whether the mean rank correlation over the test set (ρ̄)218

is significantly greater than zero. For each empirical time series and for each ranking approach,219

we shuffle εi values across species for each point in the test set and compute ρ̄ 1,000 times to220

obtain a p-value. We also perform these analyses using τ = 2 (Fig. S22) as well as using 60%221

and 50% of points in the training set (Figs. S23 and S24).222

8 Forecast analyses with synthetic time series223

In the previous section, we describe our analyses using empirical time series to test the hy-224

pothesis that species showing higher forecast errors (εi) at a given time are also more sensitive to225

perturbations (i.e., have a higher value of E(si) or |v1i|). Here, we describe similar analyses using226
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the five synthetic time series generated from population dynamics models (see Section 3). In these227

analyses, we compute an average forecast error (ε̄i) for each species by trying to forecast species228

abundances with the LSTM neural network under perturbations (Cenci et al., 2020, James et al.,229

2021). First, we separate a given synthetic time series into a training set (first half of the time230

series) and a test set (second half of the time series). Then, we add 10% of observational noise231

to the training set (see Section 6) and use it to infer the Jacobian matrix with the S-map and232

to forecast species abundances with the LSTM at the last point in the training set. Following233

the analyses of the previous section, we forecast species abundances for τ = 3 steps ahead and234

then move the training set forward by keeping its size fixed and repeat the inference and forecast235

procedures until the end of the time series. For each time t in the test set, we compute an average236

forecast root-mean-square error (RMSE) under perturbations for each species i as:237

ε̄i =
1

n

n∑
j=1

√
[Ñ

(j)
i (t+ τ − 1)− N̂i(t+ τ − 1)]2, (S11)

where n is the number of perturbed abundances (n = 300), Ñi
(j)

(t+ τ − 1) is the jth perturbed238

abundance of species i at time t + τ − 1, and N̂i(t + τ − 1) is the forecast of the abundance of239

species i at time t + τ − 1. Thus, we compute the average forecast error of each species for n240

potential perturbed abundances that could have been observed at a given point in time. Note241

that perturbed abundances are obtained from our perturbation analyses (see Section 4).242

We then use the inferred expected sensitivity (E(si)) and eigenvector (|v1i|) rankings as well243

as our alternative indicators (i.e., ∆Ni(t) or −Ni(t)) to predict the order of average forecast244

errors (ε̄i) over the test set. Note that this analysis follows closely our analyses of predicting245

the order of species sensitivities (〈si〉) described in the main text. Fig. S19 shows the results246

for these analyses as the Spearman’s rank correlation (ρ) between a given ranking (E(si), |v1i|,247

∆Ni(t), or −Ni(t)) and ε̄i over the test set. The figure shows that, except for the model with248

4 competitor species, E(si) and |v1i| show, on average, a positive rank correlation with ε̄i (Fig.249

S19). Furthermore, the figure shows that this is not the case for ∆Ni(t) and −Ni(t) (Fig. S19).250

Therefore, this analysis illustrates that species forecast errors can be related to our measures of251

sensitivity to perturbations under synthetic time series.252

9 Leading eigenvector and direction of greatest perturbation ex-253

pansion under equilibrium dynamics254

We now explain how the leading eigenvector of the Jacobian matrix J (see Section 1) points255

in the direction of greatest expansion of small perturbations under equilibrium dynamics. Under256

equilibrium dynamics and for sufficiently small perturbations, J evaluated at the equilibrium N∗257

is constant. Thus, we can obtain the general solution of the linear differential equation (S3) as258
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(Boyce et al., 2017, Strogatz, 2018):259

p(t+ k) =
S∑
i=1

cie
λikvi, (S12)

where where vi is the real part of the ith eigenvector of J, λi is the real part of the ith eigenvalue260

(λS ≤ ... ≤ λ1), and each ci is a constant that depends on the initial condition p(t) =
∑S

i=1 civi.261

Under equilibrium dynamics, λi < 0 for all i implies a stable equilibrium, whereas λi > 0 for any262

i implies an unstable equilibrium (Strogatz, 2018). Note that, without loss of generality, we can263

set t = 0 for the initial condition. Also note that the solution for p(t+ k) can only be described264

by equation (S12) if J has S distinct eigenvalues and, therefore, a set of S linearly independent265

eigenvectors. We propose that given a sufficient amount of time k, eλ1k will become much larger266

than subsequent terms (i.e., eλ2k, ..., eλSk) and, therefore, equation (S12) can be approximated267

using only the leading eigenvalue and its associated leading eigenvector:268

p(t+ k) ≈ c1eλ1kv1. (S13)

Therefore, after a sufficient time k, perturbed abundances p will be located closely to the line269

spanned by v1.270

It is important to note that the time k required for c1e
λ1kv1 to approximate p(t+k) depends271

on all eigenvalues and eigenvectors. For example, if λS < ... < λ2 < 0 < λ1 and eigenvectors are272

orthogonal to each other, then the time k for c1e
λ1kv1 to approximate p(t+ k) is expected to be273

small (see first scenario in Section 13 and Fig. S1). Importantly, this is the scenario we expect to274

observe in chaotic non-equilibrium dynamical systems that typically have directions of expansion275

(i.e., unstable manifold) and contraction (i.e., stable manifold) at each point along an attractor276

(Eckmann & Ruelle, 1985, Strogatz, 2018). On the other hand, if more than one eigenvalue is277

positive or if eigenvectors are not orthogonal, then the time k for c1e
λ1kv1 to approximate p(t+k)278

is expected to be large (see second scenario in Section 13 and Fig. S2).279

In addition, it is also important to consider the case of complex eigenvalues and eigenvectors.280

In this case, the real solution approximated using only λ1 and v1 is given by (Boyce et al., 2017):281

282

p(t+ k) ≈ c1p1 + c2p2, (S14)

where c1 and c2 are constants and p1 and p2 are the two linearly independent real solutions given

by:

p1 = eak[u cos (bk)− z sin (bk)]

p2 = eak[u sin (bk) + z cos (bk)], (S15)

where λ1 = a + ib, λ2 = a − ib is the pair of leading complex eigenvalues and v1 = u + iz,283

v2 = u− iz is the pair of leading complex eigenvectors. Thus, in this case the solution p(t+ k) is284
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oscillatory. However, we can see that if the imaginary parts of the leading eigenvalue and leading285

eigenvector (b and z) are small, then their real parts (a and u) still inform us about the magnitude286

and direction of greatest expansion of perturbations, respectively (see third scenario in Section287

13 and Fig. S3). Finally, we note that b (and therefore z) is zero for the majority of points in288

three out of five synthetic time series that we analyze (predator-prey (2 sp): 47.7%; food chain289

(3 sp): 69.1%; food web (3 sp): 81.6%; competitors (4 sp): 26.4%; and food web (5 sp): 95.2%).290

To keep a simple notation, we use λi and vi throughout the text to refer to the real part of the291

ith eigenvalue and eigenvector, respectively.292

10 Leading Lyapunov vector and direction of greatest perturba-293

tion expansion under non-equilibrium dynamics294

In this study, we focus on non-equilibrium attractors such as limit cycles or chaotic attractors295

(Fig. S5). By “non-equilibrium dynamics” we refer to trajectories of a deterministic dynamical296

system (e.g., population dynamics model) that do not settle to a stable equilibrium point. A large297

literature on nonlinear dynamics has shown that local Lyapunov exponents and their associated298

Lyapunov vectors determine how a (hyper)sphere of small perturbations at a given state N299

deforms into a (hyper)ellipsoid after sufficient time (Eckmann & Ruelle, 1985, Kuptsov & Parlitz,300

2012, Mease et al., 2003, Strogatz, 2018, Vallejo et al., 2017). Let li (lS ≤ ... ≤ l1) and wi denote301

the ith local Lyapunov exponent and vector, respectively. If at time t we apply S perturbations302

with a small norm ||pi(t)|| = δ (i = 1, ..., S) in the directions of wi (i.e., pi(t)
δ = wi), then303

after some time k, ||pi(t + k)|| ≈ ||pi(t)||elik denotes the length of the ith principal axis of the304

ellipsoid (Kuptsov & Parlitz, 2012, Mease et al., 2003, Strogatz, 2018, Vallejo et al., 2017). As we305

have mentioned in Section 1, small perturbations evolve according to dp
dt = Jp. If J is constant306

through time, as is the case when it is evaluated at an equilibrium point, it has been shown that307

Lyapunov vectors (w1, ...,wS) are equivalent to the eigenvectors of J (v1, ...,vS) and Lyapunov308

exponents (lS ≤ ... ≤ l1) are equivalent to the eigenvalues of J (λS ≤ ... ≤ λ1) (Kuptsov & Parlitz,309

2012, Mease et al., 2003). Nevertheless, when J is not constant through time, it is necessary to310

incorporate information on all J matrices along a trajectory to estimate li and wi. The problem311

with this approach, however, is that it requires information beyond time t in order to detect312

the directions of perturbation expansion/contraction at time t and therefore is not useful for313

real-world applications. Thus, the question is whether the leading eigenvector can be used as314

a proxy for the leading Lyapunov vector to detect the direction of greatest expansion of small315

perturbations under non-equilibrium dynamics.316

Here we specify the conditions under which the leading eigenvector v1 is a good approximation317

to the leading Lyapunov vector w1. On the one hand, we hypothesize that when the rate of change318

of the system (dNdt ) is large, the Jacobian matrix J changes rapidly and v1 approximates w1 only319

for a small time k. Note that, under these circumstances, only a small amount of time is required320

for c1e
λ1kv1 to approximate p(t+ k) (equation (S13)). On the other hand, we hypothesize that321
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when dN
dt is small, J changes slowly and v1 approximates w1 for a larger time k. Note that,322

under this scenario, a larger amount of time is required for c1e
λ1kv1 to approximate p(t + k).323

Therefore, the leading eigenvector must show a higher accuracy in detecting the direction of324

greatest perturbation expansion when the amount of time k for which perturbations evolve is325

inversely proportional to the current rate of change of the system. Note that we set k to be326

inversely proportional to the local rate of change of the system in our main perturbation analyses327

(see Section 4; Fig. 3 in the main text), but also perform perturbation analyses using fixed values328

of k (see Section 4; Figs. S11 and S12).329

To verify how well the leading eigenvector v1 approximates the leading Lyapunov vector w1,330

we compute w1 for all points along each synthetic time series (see Section 3). Although comput-331

ing the complete set of Lyapunov vectors is a more complicated procedure (Ginelli et al., 2007,332

Kuptsov & Parlitz, 2012), computing just w1 (i.e., direction of greatest perturbation expansion)333

is straightforward (Vallejo et al., 2017). Specifically, we compute w1 by applying a small pertur-334

bation p at time t and evolving the original dynamics (dNdt = f(N)) and the tangent dynamics335

(dpdt = Jp) simultaneously for k time steps. Then, p will rotate over time to the direction of336

w1 while expanding at a rate given by the leading Lyapunov exponent (l1) (Kuptsov & Parlitz,337

2012, Mease et al., 2003, Vallejo et al., 2017). For the convergence of p to w1 to be faster, we338

follow standard methods (Vallejo et al., 2017) and choose p to be a vector with a small norm r339

in the direction of v1. Specifically p = r v1
||v1|| , where we set r to be 5% of the mean standard340

deviation of species abundances: r = 0.05 1
S

∑S
i=1 σNi . For each point in time, we use the same341

value of k as used in our perturbation analyses (i.e., k is inversely proportional to the local rate342

of change of the dynamics as described in Section 4). The leading Lyapunov vector at time t can343

then be estimated as w1 = p(t + k), whereas the leading Lyapunov exponent can be calculated344

as l1 = 1
k log

(
||p(t+k)||
||p(t)||

)
. To verify how aligned v1 is with w1, we compute the absolute value of345

the cosine of the angle between v1 and w1 at each point in time. Thus, if v1 indeed points in the346

direction of w1, we expect that only the magnitude and not the direction of p will change after347

k time steps. In this case, the growth rate of the magnitude of p is given by l1. To benchmark348

the observed alignment between v1 and w1, we repeat the procedure above but choose p to be a349

vector with norm r and a random direction at each point in time. We use this analysis to compare350

the alignment between v1 and w1 (expected to be high) with the alignment of a randomly chosen351

vector p(t) and p(t + k) (expected to be low). We find v1 to be highly aligned with w1 (i.e.,352

absolute value of cosine close to 1) for all five synthetic time series (left boxplots in Fig. S4). In353

contrast, when the initial perturbation (p(t)) has a random direction instead of the direction of354

v1, we find it to be poorly aligned with p(t+ k) (right boxplots in Fig. S4).355
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11 From direction of greatest perturbation expansion to ranking356

species sensitivities357

Now, we show how we can rank species sensitivities based on the direction of greatest pertur-358

bation expansion approximated by the leading eigenvector. We define the sensitivity of species i359

to a single perturbation p from time t to t+k as the squared difference between its perturbed and360

unperturbed abundance in relation to the initial squared difference caused by the perturbation361

(equation (1) in the main text):362

si =
[Ñi(t+ k)−Ni(t+ k)]2

[Ñi(t)−Ni(t)]2
=
pi(t+ k)2

pi(t)2
. (S16)

Note that under equilibrium dynamics, we can just change Ni to N∗i and the derivation below

remains the same. Let us first consider the numerator of the equation above by substituting the

approximated solution of the linearized dynamics (equation (S13)) into it:

pi(t+ k)2 ≈ [c1e
λ1kv1i]

2

≈ c21e2λ1kv2
1i, (S17)

where v2
1i corresponds to the square of the ith element of v1. Thus, c21e

2λ1k represents the total363

amount of expansion, which depends on λ1, k, and c1 via the initial condition. Note, however,364

that this term is the same for every species i. Therefore, the values of pi(t+k)2 across species can365

be ranked using |v1i|, which follows the same order as v2
1i. We use |v1i| instead of v2

1i because it366

has a clear geometric interpretation as the alignment of v1 with the coordinate axis corresponding367

to species i in state space. That is, if ||v1|| = 1, then |v1i| is equivalent to the absolute value368

of the cosine of the angle αi between v1 and ei: |v1i| = | cosαi| = |v1ei|, where ei is the ith369

standard basis vector.370

So far, we have only considered species sensitivities to a single perturbation p. We now371

consider multiple perturbations at time t (p(t)), which follow a given distribution with mean zero372

and covariance matrix Σt. For a set of n randomly perturbed abundances, we can define the373

sensitivity of species i from time t to t + k as the average squared difference between a set of n374

randomly perturbed abundances and its unperturbed abundance in relation to the initial average375

squared difference (equation (2) in the main text):376

〈si〉 =
1
n

∑n
j=1[Ñ

(j)
i (t+ k)−Ni(t+ k)]2

1
n

∑n
j=1[Ñ

(j)
i (t)−Ni(t)]2

=
1
n

∑n
j=1 p

(j)
i (t+ k)2

1
n

∑n
j=1 p

(j)
i (t)2

. (S18)

By focusing on the numerator, we can see that 1
n

∑n
j=1 p

(j)
i (t+k)2 = E[c21e

2λ1kv2
1i] = e2λ1kv2

1iE[c21],377

since e2λ1k and v2
1i are constants. The expectation E[c21] will depend on the distribution of initial378

conditions, but will affect the sensitivity of all species by the same amount. Finally, we note379

that because pi(t) has mean zero, the denominator of equation (S18) is a constant given by the380
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variance of pi(t) (i.e., the ith diagonal element σ2i,t of Σt; Section 2). Thus, if σ2i,t is the same for381

every species i, the denominator of equation (S18) will not affect the order of 〈si〉 values and we382

can use |v1i| to rank species sensitivities. However, we keep this denominator in our definition383

of 〈si〉 to control for distinct variances across species in one of our perturbation analyses (see384

Section 4).385

12 Connection between expected sensitivity and eigenvector ap-386

proaches387

Here, we show a connection between our measures of expected sensitivity (E(si); Box 1 in

the main text) and alignment with the leading eigenvector (|v1i|; Box 2 in the main text) under

two simplifying assumptions. First, we assume that all species are affected by perturbations with

the same variance and there is no covariance among species pairs (i.e., the covariance matrix of

perturbations Σt is the identity matrix I). Second, we assume that the Jacobian matrix J at time

t is symmetric (i.e., J = J>). Note that all eigenvalues of J are guaranteed to be real when this

matrix is symmetric. Although these assumptions may not be fulfilled in natural communities,

they allow us to obtain a first insight into the connections between E(si) and |v1i|. Using these

assumptions, we can write the following equation for the covariance matrix of perturbations at

time t+ k (Section 2):

Σt+k = eJkΣte
J>k

= eJkeJk

= eJk+Jk

= eJ2k, (S19)

where eA is the exponential of a given matrix A and we have used the fact that if A and B388

commute then eAeB = eA+B. Now, we can write the eigendecomposition of Σt+k as:389

Σt+k = VeΛ2kV>, (S20)

where V is the matrix containing the eigenvectors of J (vi) as column vectors and Λ is the diagonal

matrix containing the eigenvalues of J (λi). Note that we have used the property that A and eA

share the same eigenvectors and that if λi is an eigenvalue of A, then eλi is the corresponding

eigenvalue of eA. The expected sensitivity of species i is defined as the ith diagonal element of

15



Σt+k (σ2i,t+k; Section 2), which gives us:

E(si) = σ2i,t+k

=
S∑
j=1

v2
jie

λj2k

≈ v2
1ie

λ12k, (S21)

where vji is the jth element of vi and in the last step we used the fact that, given a sufficient390

amount of time k, eλ12k will become much larger than eλ22k, ..., eλS2k and will dominate the391

expression. Thus, the order of E(si) values will follow closely the order of |v1i| values under the392

assumptions considered here. Finally, note that the final expression in equation (S21) is very393

similar to what we obtained in equation (S17) as an explanation of how we can use |v1i| to rank394

species sensitivities to a given perturbation (si).395

13 Illustrations with Lotka-Volterra dynamics at equilibrium396

To illustrate how expected sensitivities (E(si); Box 1 in the main text) and alignments with397

the leading eigenvector (|v1i|; Box 2 in the main text) are able to rank species according to their398

sensitivity to perturbations (〈si〉), we use the classic Lotka-Volterra model (equation (S9)) under399

equilibrium dynamics. For this model, the vector of species abundances at equilibrium is given400

by: N∗ = −A−1r. While the focus of our study is on non-equilibrium dynamics, our goal here is401

simply to show the performance of these two proposed methods under three simple scenarios of402

equilibrium dynamics. Our results for non-equilibrium dynamics are described in the main text.403

We use three different scenarios of the Lotka-Volterra dynamics with S = 3 species. For404

all scenarios we choose a combination of r and A giving the following feasible (i.e., positive405

abundances for all species) equilibrium: N∗ = [1, 1, 1]>. Note that for this feasible equilibrium,406

the Jacobian matrix evaluated at N∗ is given by: J = diag(N∗)A = A. For each scenario, we407

compute the eigenvalues (λi) and eigenvectors (vi) of J as well as expected sensitivities (E(si))408

using k = 0.1, 0.2, 0.3, 0.4, and 0.5. We then perform 2,000 normally distributed perturbations409

p to N∗ (i.e., pi ∼ N (µ = 0, σ2 = r2) with r = 0.05) and evolve each perturbed abundance over410

time according to equation (S9) for k = 0.5 time steps. Finally, we compute species sensitivities411

(〈si〉) at t = 0.1, 0.2, 0.3, 0.4, and 0.5 using all perturbed abundances at those time points.412

The first scenario (Fig. S1) consists of the following parameter values of the Lotka-Volterra413

model:414

r =


1

1

1

 , A =


1 −2 0

0 −1 0

0 2 −3


The eigenvalues of J show that the feasible equilibrium for this system is a saddle point: λ1 = 1415

(unstable manifold), λ2 = −1, and λ3 = −3 (stable manifolds). The order of expected sensitivities416
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is given by E(s3) < E(s2) < E(s1), which corresponds exactly to the order of species sensitivities417

(〈si〉) for all times (Fig. S1b, c). The order of eigenvector alignments is given by |v13|, |v12| < |v11|418

and corresponds closely to the order of species sensitivities, but cannot distinguish species 2 and419

3 (Fig. S1b, c). Note that expected sensitivities depend on the time step k, whereas eigenvector420

alignments do not.421

The second scenario (Fig. S2) consists of the following parameter values:422

r =


−4.5

17.5

7

 , A =


4 0.5 0

0.5 −10 −8

0 −8 1


The eigenvalues of J show that the feasible equilibrium is again a saddle point: λ1 = 5.2, λ2 =423

4.0 (unstable manifolds), and λ3 = −14.2 (stable manifold). However, this scenario is more424

challenging than the previous one for our ranking approaches because there are two (instead425

of one) directions of perturbation expansion. The order of expected sensitivities is given by426

E(s2) < E(s1) < E(s3), which corresponds exactly to the order of species sensitivities from k = 0.2427

to k = 0.5 (Fig. S2b, c). The order of eigenvector alignments is given by |v11| < |v12| < |v13|428

and provides a reasonable match to the order of species sensitivities (Fig. S2b, c).429

Finally, the third scenario (Fig. S3) consists of the following parameter values:430

r =


5

−1

−7

 , A =


−4 −3 2

−2 1 2

5 2 0


For this scenario, the leading eigenvalue of J is complex and therefore indicate oscillatory dy-431

namics: λ1 = 2.0 + 0.7i, λ2 = 2.0 − 0.7i, and λ3 = −7.0 + 0i. This scenario is also challenging432

for our ranking approaches due to this oscillatory behavior. Note, however, that the imaginary433

part of the leading eigenvalue is small compared to the real part. The order of expected sen-434

sitivities is given by E(s1) < E(s3) < E(s2), which corresponds exactly to the order of species435

sensitivities from k = 0.3 to k = 0.5 (Fig. S3b, c). The order of eigenvector alignments is given436

by |v13| < |v11| < |v12| and provides a reasonable match to the order of species sensitivities (Fig.437

S3b, c).438
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Figure S1. First scenario of Lotka-Volterra dynamics at equilibrium (see Section 13) showing how ex-
pected sensitivities (E(si)) and alignments with the leading eigenvector (|v1i|) can rank species sensitivi-
ties to perturbations (〈si〉). (a) Perturbed abundances (Ñ = N∗ + p; 2,000 gray points) at time k = 0.4
projected onto the planes of species 1 and 2 (left), species 1 and 3 (middle), and species 2 and 3 (right).
(b) Jacobian matrix (J) and its eigenvalues (λi) and leading eigenvector (v1) for this Lotka-Volterra sys-
tem (top). The order of expected sensitivities (computed using different values of k) and eigenvector
alignments (bottom). (c) Species sensitivities computed using the perturbed abundances (gray points in
(a)) at different points in time (i.e., for different values of k). In this scenario, the expected sensitivity
ranking is more accurate than the eigenvector ranking.
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Figure S2. Second scenario of Lotka-Volterra dynamics at equilibrium (see Section 13) showing how
expected sensitivities (E(si)) and alignments with the leading eigenvector (|v1i|) can rank species sen-
sitivities to perturbations (〈si〉). (a) Perturbed abundances (Ñ = N∗ + p; 2,000 gray points) at time
k = 0.4 projected onto the planes of species 1 and 2 (left), species 1 and 3 (middle), and species 2 and
3 (right). (b) Jacobian matrix (J) and its eigenvalues (λi) and leading eigenvector (v1) for this Lotka-
Volterra system (top). The order of expected sensitivities (computed using different values of k) and
eigenvector alignments (bottom). (c) Species sensitivities computed using the perturbed abundances
(gray points in (a)) at different points in time (i.e., for different values of k). In this scenario, the ex-
pected sensitivity ranking is more accurate than the eigenvector ranking.
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Figure S3. Third scenario of Lotka-Volterra dynamics at equilibrium (see Section 13) showing how ex-
pected sensitivities (E(si)) and alignments with the leading eigenvector (|v1i|) can rank species sensitivi-
ties to perturbations (〈si〉). (a) Perturbed abundances (Ñ = N∗ + p; 2,000 gray points) at time k = 0.4
projected onto the planes of species 1 and 2 (left), species 1 and 3 (middle), and species 2 and 3 (right).
(b) Jacobian matrix (J) and its eigenvalues (λi) and leading eigenvector (v1) for this Lotka-Volterra sys-
tem (top). The order of expected sensitivities (computed using different values of k) and eigenvector
alignments (bottom). (c) Species sensitivities computed using the perturbed abundances (gray points in
(a)) at different points in time (i.e., for different values of k). In this scenario, the expected sensitivity
ranking is more accurate than the eigenvector ranking.
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Figure S4. Alignments (i.e., absolute value of cosine of the angle) between the initial (p(t)) and fi-
nal (p(t + k)) perturbation vector for two directions of p(t) for the five population dynamics models
(see Section 10). Boxplots on the left correspond to p(t) in the direction of the leading eignevector (v1)
whereas boxplots on the right correspond to p(t) in a random direction. Note that p(t + k) converges
to the leading Lyapunov vector (w1) when p(t) is in the direction of v1. The figure shows that v1 is on
average much more aligned with w1 (left boxplots) than what is expected at random (right boxplots).
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Figure S5. Attractors in state space corresponding to each multivariate synthetic time series generated
from a population dynamics model (different rows; see Section 3) with a different type of noise (different
columns; see Section 6). Each plot shows the 500 points ({N(t)}, t = 1, ..., 500) generated by numeri-
cally integrating the indicated model and then sampling equidistant points. Note that we only show the
abundances of species 1, 2, and 3 for models with more than 3 species.
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Figure S6. Species sensitivities computed from our perturbation analyses (〈si〉; first column) as well
as expected sensitivities (E(si); second column) and eigenvector alignments (|v1i|; third column) in-
ferred from each synthetic time series (different rows) with the S-map over time. A bar in one of the
plots shows the values of the corresponding variable (i.e., 〈si〉, E(si), or |v1i|) across species. Note that
variables are rescaled to sum 1 across species to improve visualization but that this procedure does not
change the rankings. These results correspond to our main set of analyses with synthetic time series
shown in the main text (Fig. 3).
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Figure S7. Mean Spearman’s rank correlation over time (ρ̄) between species sensitivities to perturba-
tion (〈si〉) and four different approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change,
∆Ni(t); and abundance, −Ni(t)) as a function of the percentile of λ1 used to filter the time series. Each
point represents the ρ̄ value obtained using a given ranking approach after removing time series points
with a λ1 value lower than the indicated percentile of the λ1 distribution. The figure shows that, for
most models, the expected sensitivity and eigenvector rankings (yellow circles and blue triangles) be-
come more accurate (i.e., higher ρ̄) when we only use points with a high λ1. Note that we compute
E(si), |v1i|, and λ1 analytically for this figure. Also note that the values of ρ̄ for the 0th percentile are
exactly the same as the ones shown in Fig. 3a in the main text.
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Figure S8. Alignments (i.e., absolute value of cosine of the angle) between v1 inferred with the S-map
and v1 computed from the analytical Jacobian matrix (left boxplots) as well as alignments between two
randomly sampled vectors (right boxplots) for each of the five population dynamics models. Each box-
plot on the left shows the alignment values computed using the second half of each time series (i.e., last
250 points) for which the S-map was used to infer v1 (see Section 5). Each boxplot on the right shows
the alignment values computed using 250 pairs of vectors with random directions. The figure shows that
v1 inferred with the S-map is on average much more aligned with the analytical v1 than what is ex-
pected if their directions are sampled at random.
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Figure S9. Same as Fig. 3a in the main text, but performing uniformly distributed perturbations in-
stead of normally distributed perturbations (see Section 4). The figure shows the percentage of points
with a given rank correlation value (ρ, size of gray points) and the average rank correlation (ρ̄, horizon-
tal lines) between species sensitivities to perturbations (〈si〉) and four different approaches (expected
sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we com-
pute E(si) and |v1i| analytically for this figure. For this figure, perturbed abundances (Ñ) are uniformly
sampled inside a hypersphere of radius r centered in N, were r corresponds to 15% of the mean stan-
dard deviation of species abundances.
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Figure S10. Same as Fig. 3a in the main text, but performing normally distributed perturbations with
a variance proportional to relative species abundances instead of a fixed variance over time (see Section
4). The figure shows the percentage of points with a given rank correlation value (ρ, size of gray points)
and the average rank correlation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉)
and four different approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and
abundance, −Ni(t)). Note that we compute E(si) and |v1i| analytically for this figure. For this figure,

we sample perturbations to N(t) as: pi(t) ∼ N (µ = 0, σ2 = N ′i(t)r
2), where N ′i(t) = Ni(t)∑S

i=1 Ni(t)
and were

r corresponds to 15% of the mean standard deviation of species abundances.
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Figure S11. Same as Fig. 3a in the main text, but using k = 1 as the time step to integrate perturbed
and unperturbed abundances instead of k being inversely proportional to the mean absolute abundance
percent change (see Section 4). The figure shows the percentage of points with a given rank correlation
value (ρ, size of gray points) and the average rank correlation (ρ̄, horizontal lines) between species sen-
sitivities to perturbations (〈si〉) and four different approaches (expected sensitivity, E(si); eigenvector,
|v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we compute E(si) and |v1i| analyti-
cally for this figure. For this figure, we numerically integrate every perturbed (Ñ(t)) and unperturbed
abundance (N(t)) for k = 1 time step to compute 〈si〉.
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Figure S12. Same as Fig. 3a in the main text, but using k = 3 as the time step to integrate perturbed
and unperturbed abundances instead of k being inversely proportional to the mean absolute abundance
percent change (see Section 4). The figure shows the percentage of points with a given rank correlation
value (ρ, size of gray points) and the average rank correlation (ρ̄, horizontal lines) between species sen-
sitivities to perturbations (〈si〉) and four different approaches (expected sensitivity, E(si); eigenvector,
|v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we compute E(si) and |v1i| analyti-
cally for this figure. For this figure, we numerically integrate every perturbed (Ñ(t)) and unperturbed
abundance (N(t)) for k = 3 time steps to compute 〈si〉.
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Figure S13. Same as Fig. 3a in the main text, but using k = 1 as the time step to compute expected
sensitivities (E(si)) when the true time step used to integrate perturbed and unperturbed abundances is
inversely proportional to the mean absolute abundance percent change (see Section 2). The figure shows
the percentage of points with a given rank correlation value (ρ, size of gray points) and the average rank
correlation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉) and four different ap-
proaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)).
Note that we compute E(si) and |v1i| analytically for this figure. For this figure, we numerically inte-
grate every perturbed (Ñ(t)) and unperturbed abundance (N(t)) for a time step k that depends on the
local time scale of the dynamics, but always compute E(si) using k = 1.
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Figure S14. Same as Fig. 3a in the main text, but adding a normally distributed noise to k and Σt

at each point in time to compute expected sensitivities (E(si); see Section 2). The figure shows the per-
centage of points with a given rank correlation value (ρ, size of gray points) and the average rank cor-
relation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉) and four different ap-
proaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)).
Note that we compute E(si) and |v1i| analytically for this figure. For this figure, we perform the same
perturbation analyses as described for Fig. 3 (see Section 4), but add 100% of a normally distributed
noise to the true value of k and to Σt = I before computing E(si).
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Figure S15. Same as Fig. 3b in the main text, but normalizing the abundances of each species i
(Ni(t)) in the training set to mean zero and unit standard deviation before performing the S-map. The
figure shows the percentage of points with a given rank correlation value (ρ, size of gray points) and
the average rank correlation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉)
and four different approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and
abundance, −Ni(t)). Note that we infer the Jacobian matrix with the S-map using a moving training set
in order to compute E(si) and |v1i| for this figure.

34



____
____

__

__

____ ____

Predator−prey (2 sp) Food chain (3 sp) Food web (3 sp) Competitors (4 sp) Food web (5 sp)

Exp
ec

te
d 

se
ns

itiv
ity

Eige
nv

ec
to

r

Rat
e 

of
 ch

an
ge

Abu
nd

an
ce

Exp
ec

te
d 

se
ns

itiv
ity

Eige
nv

ec
to

r

Rat
e 

of
 ch

an
ge

Abu
nd

an
ce

Exp
ec

te
d 

se
ns

itiv
ity

Eige
nv

ec
to

r

Rat
e 

of
 ch

an
ge

Abu
nd

an
ce

Exp
ec

te
d 

se
ns

itiv
ity

Eige
nv

ec
to

r

Rat
e 

of
 ch

an
ge

Abu
nd

an
ce

Exp
ec

te
d 

se
ns

itiv
ity

Eige
nv

ec
to

r

Rat
e 

of
 ch

an
ge

Abu
nd

an
ce

−1.0

−0.5

0.0

0.5

1.0

Ranking method

C
or

re
la

tio
n 

(ρ
) b

et
w

ee
n 

sp
ec

ie
s

ra
nk

in
gs

 a
nd

 s
en

si
tiv

iti
es

Percentage of
points (%)

20
40
60

Figure S16. Same as Fig. 3b in the main text, but using a shorter training set with 100 instead of 250
points to perform the S-map (see Section 6). The figure shows the percentage of points with a given
rank correlation value (ρ, size of gray points) and the average rank correlation (ρ̄, horizontal lines) be-
tween species sensitivities to perturbations (〈si〉) and four different approaches (expected sensitivity,
E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we infer the Ja-
cobian matrix with the S-map using a moving training set in order to compute E(si) and |v1i| for this
figure.
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Figure S17. Same as Fig. 3b in the main text, but adding 10% of observational noise to the training
set before performing the S-map (see Section 6). The figure shows the percentage of points with a given
rank correlation value (ρ, size of gray points) and the average rank correlation (ρ̄, horizontal lines) be-
tween species sensitivities to perturbations (〈si〉) and four different approaches (expected sensitivity,
E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Note that we infer the Ja-
cobian matrix with the S-map using a moving training set in order to compute E(si) and |v1i| for this
figure.
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Figure S18. Same as Fig. 3b in the main text, but generating each synthetic time series with the pop-
ulation dynamics model containing stochasticity (i.e., process noise; see Section 6). The figure shows the
percentage of points with a given rank correlation value (ρ, size of gray points) and the average rank
correlation (ρ̄, horizontal lines) between species sensitivities to perturbations (〈si〉) and four different ap-
proaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)).
Note that we infer the Jacobian matrix with the S-map using a moving training set in order to compute
E(si) and |v1i| for this figure.
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Figure S19. Similar to Fig. 3b in the main text, but here we compute the Spearman’s rank correlation
(ρ) between species average forecast errors under perturbations (ε̄i; see Section 8) and the four rank-
ing approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance,
−Ni(t)). The figure shows the percentage of points with a given ρ value (size of gray points) and the
average rank correlation (ρ̄, horizontal lines). Note that we infer the Jacobian matrix with the S-map
using a moving training set in order to compute E(si) and |v1i| for this figure. This figure illustrates
our hypothesis that species that are more sensitive to perturbations (i.e., high E(si) or |v1i|) tend to be
harder to forecast under perturbations (i.e., high ε̄i).
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Figure S20. Species standardized forecast root-mean-square error computed from our forecast analyses
(εi; first column; see Section 7) as well as expected sensitivities (E(si); second column) and eigenvec-
tor alignments (|v1i|; third column) inferred from each empirical time series (different rows) with the
S-map over time. A bar in one of the plots shows the values of the corresponding variable (i.e., εi, E(si),
or |v1i|) across species. Note that variables are rescaled to sum 1 across species to improve visualiza-
tion but that this procedure does not change the rankings. These results correspond to our main set of
analyses with empirical time series shown in the main text (Fig. 4).
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Figure S21. Same as Fig. 4a in the main text but for the empirical time series of marine plankton
species (Benincà et al., 2009) (see Section 7). Each panel shows the time series of the abundance of a
given species with points colored according to their expected sensitivity value (E(si)). We infer E(si) at
the last point in the training set with the S-map trained on a moving training set (gray region) contain-
ing (a) 70%, (b) 60%, or (c) 50% of the whole time series. In general, calanoids are the most sensitive
species followed by rotifers or picocyanobacteria depending on the point in time.
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Figure S22. Same as Fig. 4 in the main text but using τ = 2 steps ahead to forecast species abun-
dances and compute forecast errors (εi) instead of τ = 3 (see Section 7). Note that here we use k = 2
instead of k = 3 to compute expected sensitivities (E(si)). (a) Time series of a rocky intertidal commu-
nity containing four species with point color depicting their expected sensitivity value. (b) Rank corre-
lation (ρ) between εi and four different approaches (expected sensitivity, E(si); eigenvector, |v1i|; rate
of change, ∆Ni(t); and abundance, −Ni(t)). Each panel shows the percentage of points with a given ρ
value (size of gray points) and the average of these values across the test set (ρ̄, horizontal lines) for a
given empirical time series. (c) Average correlation (ρ̄) between εi and the different ranking approaches
computed for points in the test set that have a λ1 value higher than a given percentile of the λ1 distri-
bution.
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Figure S23. Same as Fig. 4 in the main text but using 60% instead of 70% of the each empirical time
series as the moving training set (gray region in (a); see Section 7). (a) Time series of a rocky intertidal
community containing four species with point color depicting their expected sensitivity value (E(si)).
(b) Rank correlation (ρ) between εi and four different approaches (expected sensitivity, E(si); eigenvec-
tor, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Each panel shows the percentage of points
with a given ρ value (size of gray points) and the average of these values across the test set (ρ̄, horizon-
tal lines) for a given empirical time series. (c) Average correlation (ρ̄) between εi and the different rank-
ing approaches computed for points in the test set that have a λ1 value higher than a given percentile of
the λ1 distribution.
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Figure S24. Same as Fig. 4 in the main text but using 50% instead of 70% of the each empirical time
series as the moving training set (gray region in (a); see Section 7). (a) Time series of a rocky intertidal
community containing four species with point color depicting their expected sensitivity value (E(si)).
(b) Rank correlation (ρ) between εi and four different approaches (expected sensitivity, E(si); eigenvec-
tor, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Each panel shows the percentage of points
with a given ρ value (size of gray points) and the average of these values across the test set (ρ̄, horizon-
tal lines) for a given empirical time series. (c) Average correlation (ρ̄) between εi and the different rank-
ing approaches computed for points in the test set that have a λ1 value higher than a given percentile of
the λ1 distribution.
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Figure S25. Same as Fig. 4 in the main text but normalizing the abundances of each species i (Ni(t))
in the training set to mean zero and unit standard deviation before performing the S-map (see Section
7). Note that we always normalize abundances before the forecast analyses (i.e., LSTM neural network).
(a) Time series of a rocky intertidal community containing four species with point color depicting their
expected sensitivity value (E(si)). (b) Rank correlation (ρ) between εi and four different approaches
(expected sensitivity, E(si); eigenvector, |v1i|; rate of change, ∆Ni(t); and abundance, −Ni(t)). Each
panel shows the percentage of points with a given ρ value (size of gray points) and the average of these
values across the test set (ρ̄, horizontal lines) for a given empirical time series. (c) Average correlation
(ρ̄) between εi and the different ranking approaches computed for points in the test set that have a λ1
value higher than a given percentile of the λ1 distribution.
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