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Ecological interactions shape adaptations through coevolution
not only between pairs of species but also through entire mul-
tispecies assemblages. Local coevolution can then be further
altered through spatial processes that have been formally parti-
tioned in the geographic mosaic theory of coevolution. A major
current challenge is to understand the spatial patterns of coad-
aptation that emerge across ecosystems through the interplay
between gene flow and selection in networks of interacting
species. Here, we combine a coevolutionary model, network
theory, and empirical information on species interactions to inves-
tigate how gene flow and geographical variation in selection
affect trait patterns in mutualistic networks. We show that gene
flow has the surprising effect of favoring trait matching, espe-
cially among generalist species in species-rich networks typical
of pollination and seed dispersal interactions. Using an analyti-
cal approximation of our model, we demonstrate that gene flow
promotes trait matching by making the adaptive landscapes of
different species more similar to each other. We use this result to
show that the progressive loss of gene flow associated with habi-
tat fragmentation may undermine coadaptation in mutualisms.
Our results therefore provide predictions of how spatial pro-
cesses shape the evolution of species-rich interactions and how
the widespread fragmentation of natural landscapes may modify
the coevolutionary process.

coadaptation | ecological networks | gene flow | mutualism |
trait matching

Ecological interactions are a fundamental component of bio-
diversity (1). Phenotypic traits of many species have evolved

through selection imposed by ecological interactions, such as tox-
ins in prey and resistance to toxins in their predators (2) or floral
tubes of plants and mouthparts of their pollinators (3). These
examples show how reciprocal selection shapes coadaptation
in pairs or small groups of interacting species. However, small
groups of species rarely interact in isolation. Species are usually
embedded in networks containing dozens or even hundreds of
interacting species (4, 5). Understanding how patterns of coad-
aptation arise and favor species persistence in large assemblages
of interacting species is currently a major challenge requiring
approaches at the interface of ecology, evolution, and network
science (6–8).

For mutualisms, previous studies have explored how coevo-
lution may affect network architecture—that is, the pattern of
interactions among species—and, in turn, how such architec-
ture may drive coevolution. The role of coevolution in shaping
the organization of links of empirical networks is still uncer-
tain (9–12). Nevertheless, it is known that network architecture
varies with fundamental aspects of the natural history of inter-
actions, potentially leading to distinct coevolutionary dynamics
(7, 13). For example, multiple-partner mutualisms, in which
an individual interacts with several individuals throughout its
life, such as pollination or seed dispersal by animals, typically
form species-rich and nested networks (14, 15). Theoretical
evidence suggests that coevolution in multiple-partner mutu-
alisms operates in part through indirect evolutionary effects—
that is, evolutionary outcomes caused by species that are not

linked as interacting partners (7), favoring similarity in traits at
the community level (i.e., trait convergence) (16, 17). In con-
trast, intimate mutualisms, in which an individual completes
at least a life stage on a single host, such as protection of
host plants by ants or protection of anemonefishes by host
anemones, generate species-poor and modular networks (18,
19). Coevolution in intimate mutualisms is expected to exhibit
frequent and reciprocal effects between species that interact
directly (13), leading to the tight trait matching observed in
many intimate interactions (20). Thus, studies of coevolution in
mutualistic networks have shown how adaptive landscapes may
be modified by the underlying network structure, molding trait
patterns (Fig. 1A).

Coevolution in multispecific interactions, however, is a geo-
graphic process, as the assembly of interaction networks and the
ongoing coevolution in these networks may vary across space
(1). In pairs or small groups of species, theoretical and empir-
ical work on the geographic mosaic of coevolution have shown
that patterns of adaptation vary widely across geographic regions
depending on the distribution of local selection regimes (2, 21–
23). In addition, the connection of different populations via gene
flow as well as other genetic and genomic processes may remix
trait distributions across the landscape, promoting or inhibit-
ing the evolution of local coadaptation (24–27). Although gene
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Fig. 1. Potential effects of gene flow on trait evolution in mutualistic net-
works. In this example, there are two sites in which the same two pollinator
species interact with the same plant species. Each curve represents a trait
distribution with mean zi of one population in one of the sites (light gray
and black: pollinator species; dark gray: plant species). Dashed lines indicate
the trait values favored by the local environment (✓i). (A) In the absence
of gene flow across sites, trait matching (colors in the interaction matrix)
evolves because mutualistic interactions modify local adaptive landscapes.
(B and C) Gene flow across sites with distinct selection regimes may shift
species traits, further altering adaptive landscapes and trait patterns in two
possible ways. (B) First, gene flow may induce trait mismatching. (C) Second,
gene flow may strengthen the coadaptation pattern previously observed for
the isolated assemblage.

flow may strengthen local adaptation by increasing the genetic
variation available to selection in some systems (28), this mech-
anism alone is unlikely in coevolving systems, in which gains in
genetic variation would not compensate the deviations from local
adaptation (21).

Despite the importance of gene flow and geographical vari-
ation in selection in interactions involving few species, we
currently lack a framework to understand how these pro-
cesses shape trait evolution in species-rich metacommunities
(29, 30). In spatial metanetworks (31), the interplay between
gene flow, geographical variation in selection, and both direct
and indirect coevolutionary effects may reshape local adap-
tive landscapes with important consequences for trait evolution
(Fig. 1 B and C).

Here, we combine a mathematical model of coevolution,
network theory, and empirical data on species interactions to

develop a framework that merges the geographic mosaic of
coevolution with coevolutionary networks. We use this frame-
work to investigate how the interplay between gene flow, geo-
graphical variation in selection, and network structure may affect
the emergence of coadaptation in mutualisms. Through numer-
ical simulations parameterized by 72 empirical networks, we
show that gene flow increases trait matching between mutualistic
partners, especially in species-rich, nested networks. Additional
simulations using an analytical approximation of our model show
that the progressive loss of gene flow due to habitat fragmenta-
tion could undermine coadaptations by altering species adaptive
landscapes.

Results

Gene Flow, Geographical Variation in Selection, and the Evolution

of Trait Patterns. We first explored the emergence of trait match-
ing in a single site using a previously developed model (7) that
describes the evolution of a single trait shaped by mutualistic
interactions among populations of different species (Materials
and Methods). In this model, the mean trait value of each species
(zi) evolves toward a fixed environmental optimum (✓i) in the
absence of mutualism. Mutualistic selection modifies this simple
adaptive landscape by favoring trait matching among mutual-
istic partners (Fig. 1A). We performed numerical simulations
of this model parameterized by the structure of 72 empirical
mutualistic networks (SI Appendix, Table S1). We found that
increasing mutualistic selection (mi) leads to stronger reciprocal
selection and to higher trait matching (SI Appendix, Fig. S1). As
a consequence, networks in which mi is high and there is strong
reciprocal selection (hereafter hotspots) favor higher levels of
trait matching than networks in which mi is low and there is weak
reciprocal selection (hereafter coldspots).

We next extended the coevolutionary model to two sites to
explore how gene flow and geographical variation in mutualis-
tic selection affect trait evolution (Materials and Methods). We
performed simulations parameterized by our 72 empirical net-
works, assuming that the same network occurs at both sites. We
found that gene flow (gi) can either enhance or reduce trait
matching, depending on mutualistic selection. For the majority
of combinations of mutualistic selection, including two hotspots
(mA =mB =0.7), gene flow favors the emergence of trait match-
ing (Fig. 2A and SI Appendix, Fig. S2). This surprising effect
occurs because gene flow cancels out local conflicting selective
pressures and allows trait matching to evolve, especially in pairs
of generalist species (i.e., species with many interactions; Fig. 2A
and SI Appendix, Fig. S3). This effect of gene flow results both
from the uncoupling of species traits from their environmental
optima and from the geographical homogenization of traits (SI
Appendix, Fig. S4).

Importantly, gene flow promotes trait matching especially
when environmental optima (✓i,A, ✓i,B ) are not correlated across
sites, meaning that the selection regime of each species varies
geographically as a selection mosaic (SI Appendix, Fig. S5). For a
few combinations of mutualistic selection, such as a hotspot and
a coldspot (mA =0.9, mB =0.1), gene flow disrupts trait match-
ing at the hotspot (Fig. 2B and SI Appendix, Fig. S2). In this case,
populations at the coldspot are trapped into their environmental
optima, and gene flow inhibits the evolution of trait matching at
the hotspot. Sensitivity analyses showed that these results hold
for many different parameter values (SI Appendix, Table S2 and
Fig. S5), for a scenario in which gene flow is greater in generalist
than in specialist species (SI Appendix, Fig. S6), and for a sce-
nario in which species composition and network structure vary
across sites (SI Appendix, Fig. S7).

We then obtained analytical equilibrium expressions to under-
stand how coevolution shapes trait patterns (SI Appendix). With
a single site, the trait values at equilibrium (vector z⇤) are
connected to species environmental optima (vector ✓) through
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Fig. 2. Effects of gene flow on the evolution of trait matching in mutualistic networks. (A and B) Each point is the mean trait matching at equilibrium at the
hotspot (⌧A*) for 100 simulations parameterized with a seed dispersal network (network 64 in SI Appendix, Table S1), and bars show the 95% confidence
interval. (A) When mutualistic selection is high at both sites (mA = mB = 0.7), gene flow favors trait matching at each hotspot. (B) When mutualistic selection
is high at only one site (mA = 0.9, mB = 0.1), gene flow reduces trait matching at the hotspot. Changes in mean trait matching (A and B) are a consequence of
changes in the matching among generalist species, as shown in the interaction matrices (colors depict equilibrium pairwise trait matching for one simulation
with the indicated value of gene flow). Sample distributions and values for simulation parameters: 'i,A, 'i,B ⇠N [µ= 0.5, �2 = 10�4], ✓i,A ⇠U [0, 10], ✓i,B ⇠
U [10, 20], mi,A ⇠N [mA, 10�4], mi,B ⇠N [mB, 10�4], gi ⇠N [g, 10�6], and ↵= 0.2.

a matrix (T) that contains direct and indirect coevolutionary
effects: z⇤ =T✓ (7). Row i of T represents how other species
directly or indirectly affect the adaptive landscape of species i .
By measuring the correlation among rows of T, we showed that
similar mutualistic adaptive landscapes among species favor trait
matching and trait convergence (SI Appendix). Moreover, we
found that increasing mutualistic selection leads to greater simi-
larity of adaptive landscapes and higher trait matching, because
indirect effects become stronger when mutualistic selection is
higher (SI Appendix, Figs. S8 and S9). With two sites, the matrix
T combines direct and indirect coevolutionary effects within and
between sites. We found that increasing gene flow contributes
to the similarity of adaptive landscapes, fueling trait matching in
both mutualistic assemblages (SI Appendix, Figs. S10 and S11A).
It does so by expanding the indirect effects of mutualistic selec-
tion across sites. In contrast, gene flow between a hotspot and a
coldspot has an opposite effect and decreases trait matching (SI
Appendix, Fig. S11B).

Network Structure and the Evolution of Trait Patterns. Our next
step was to investigate how network structure influences coevo-
lution and mediates the effects of gene flow. We characterized
the structure of our 72 empirical networks using four met-
rics: species richness, connectance, nestedness, and modularity
(Materials and Methods). We performed a Principal Compo-
nent Analysis (PCA) of these metrics to obtain two variables
(PC1 and PC2) that describe the range of variation in net-
work structure in our empirical dataset (Fig. 3A and SI Appendix,
Table S1).

In the absence of gene flow, species-poor, modular net-
works typical of intimate mutualisms favored the evolution of
higher levels of trait matching than species-rich, nested net-
works typical of multiple-partner mutualisms (Fig. 3B, mul-
tiple linear regression: ⌧⇤ ⇠ 0.73� 0.01PC1� 0.05PC2,m =
0.7, g =0). When gene flow is present, however, network struc-
ture has a weaker effect on the emergence of trait matching,
allowing multiple-partner mutualisms to attain levels of trait

matching almost as high as the ones observed for intimate mutu-
alisms (Fig. 3C, ⌧⇤

A ⇠ 0.86� 0.005PC1� 0.01PC2,mA =mB =
0.7, g =0.3). This result occurs because networks of multiple-
partner mutualisms contain a core of interacting generalists and
the effect of gene flow on trait matching is stronger for pairs of
generalist species than for other pairs of species (SI Appendix,
Fig. S3). Our simulations using other combinations of mutualistic
selection (mA, mB ) support the interpretation that gene flow has
a stronger effect on multiple-partner mutualisms (SI Appendix,
Fig. S2).

Disruption of Gene Flow and Its Consequences for Coevolution.

Having shown that gene flow may favor the emergence of
coadaptation in mutualistic networks, we next considered the
consequences of the disruption of gene flow to trait evolu-
tion. To do so, we simulated a progressive loss of gene flow
in two initially connected mutualistic assemblages and com-
puted equilibrium trait values using our analytical approxi-
mation (Materials and Methods). We used empirical informa-
tion on ecological dependencies between mutualistic partners
(i.e., weights in adjacency matrices; SI Appendix, Table S1)
of 29 networks in our dataset to parameterize the evolution-
ary effects (qij ) of the matrix T. By removing gene flow from
an increasing fraction of species, we altered the direct and
indirect coevolutionary effects within and between networks
present in T.

We found that the ongoing disruption of gene flow causes
trait matching to decrease, but extreme loss of gene flow may
recover some level of trait matching (Fig. 4and SI Appendix,
Fig. S12). Further analysis revealed that the lowest values of
trait matching in these simulations occur when gene flow is
highly variable across species in the network (SI Appendix,
Fig. S13).

Discussion

The geographical and multispecific complexity of coevolution
poses a challenge to our understanding of the evolution of
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Fig. 3. Network structure, gene flow, and the emergence of trait match-
ing in mutualistic networks. (A) PC1 and PC2 of a PCA using four net-
work structure metrics measured for our 72 empirical networks. PC1
accounted for 60.9% of all variation and was strongly correlated with con-
nectance (0.56), nestedness (0.58), and modularity (−0.56). PC2 accounted
for 32.4% of all variation and was strongly correlated with species rich-
ness (0.81). Network structure was highly variable, as illustrated by an
ants–myrmecophytes (Left, network 14 in SI Appendix, Table S1) and a
seed dispersal (Right, network 64 in SI Appendix, Table S1) network. Types
of mutualism: green, pollination; cyan, ants–nectary-bearing plants; dark
blue, marine cleaning; purple, seed dispersal; red, ants–myrmecophytes;
orange, anemones–anemonefishes. (B and C) Predicted mean trait matching
at the hotspot (⌧A

*) for a linear model with PC1 and PC2 as explana-
tory variables and trait matching from simulations as the response variable
(white points are the networks in A). (B) Species-poor, modular networks
favored the emergence of trait matching in isolated hotspots (m = 0.7,
g = 0, n = 100 simulations per network). (C) The effect of network structure
is reduced when the two hotspots are connected by gene flow, and species-
rich, nested networks may also favor high trait matching (mA = mB =
0.7, g = 0.3, n = 100 simulations per network). Simulation parameters as
in Fig. 2.

interacting species. In this study, we tackled this challenge
by taking a first step in merging the geographic mosaic the-
ory of coevolution with the recent approach of coevolutionary
networks. Our framework combines a coevolutionary model
and network theory to evaluate how gene flow, hotspots, and
coldspots shape trait matching in multiple-partner and inti-
mate mutualisms. Our findings reveal three main ways in which
gene flow may be a fundamental process catalyzing the evo-
lution of coadaptation in species-rich systems across simple
landscapes.

First, gene flow may promote trait matching among mutu-
alists within large networks. Previous results have shown that
gene flow is capable of promoting adaptive evolution in natu-
ral populations by increasing local genetic variation (28) or when
individuals disperse to specific habitats (32). Here, we reveal an
additional mechanism for how gene flow may contribute to adap-
tation. When two mutualistic assemblages are connected by gene
flow, the effects of environmental selection are canceled out,
allowing mutualistic selection to drive trait evolution. As a con-
sequence, gene flow makes the adaptive landscape of different
species more similar to each other, erasing the conflicting selec-
tive pressures on highly interacting species and allowing trait
matching and trait convergence to emerge. This result may pro-
vide a mechanism for one of the most challenging problems in
coevolution, which is how local adaptation scales up to gener-
ate trait patterns in interacting species across broad geographical
areas. We also found that gene flow may reduce trait matching
for some specific scenarios, such as when a hotspot is linked to a
coldspot. Therefore, specific combinations of gene flow and geo-
graphical variation in selection may generate trait mismatching
in interacting species (2, 21). By analyzing pairs of interacting
species, we showed that the observed changes in coadaptation
patterns are mainly driven by species with a high number of inter-
actions, such as generalist bees in pollination networks (33). This
result, combined with our simulations incorporating simple spa-
tial turnover in species composition, allows us to hypothesize
that the observed effects of gene flow and geographical variation
in selection should hold whenever generalist species are consis-
tently present across local interaction networks. Our conclusions,
however, may not hold for more complex landscapes, in which
spatial heterogeneity may lead to unanticipated evolutionary
dynamics.

Second, we show that network architecture mediates the effects
of gene flow and geographical variation in selection on the evo-
lution of trait patterns. The study of coadaptation in mutualistic
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Fig. 4. Disruption of gene flow and its consequences for trait matching in
mutualistic networks. Trait matching decreases as gene flow is progressively
lost in mutualistic networks but increases slightly with an extreme loss of
gene flow. Initially, all species in the network have a high value of gene flow
(gi = 0.3 8 i), and species randomly lose gene flow until all species lack gene
flow (gi = 0 8 i). Each point is the mean equilibrium trait matching at site A

(⌧A*) calculated with our analytical equilibrium expression using 10 differ-
ent environmental optimum (✓) samples in each of 10 distinct simulations.
Lines connect points from the same network, and different colors indicate
different types of mutualism. Sample distributions and values for simulation
parameters: 'i,A ='i,B = 1, ✓i,A ⇠U [0, 10], ✓i,B ⇠U [10, 20], mi,A = mi,B = 0.5,
and ↵= 0.2.
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systems has often focused on specialized interactions, such as
the protection of host plants by their sheltered ant colonies (20,
34). In small networks of specialized species, coevolution should
operate through frequent reciprocal changes between interacting
species, generating impressive matching between morphological
or physiological traits (20, 23, 34). However, in networks with
dozens of interacting partners, coevolution may proceed through
indirect effects (7), potentially driving community-level trait pat-
terns such as trait convergence in assemblages of mimetic species
(35) or fruiting plants (16). Because our results indicate that
gene flow favors coadaptation mainly among generalist species,
the effect of gene flow is greater in species-rich, nested net-
works than in species-poor, modular networks. Thus, networks
of intimate mutualisms such as protective ants and their host
myrmecophytes may favor tight trait matching between interact-
ing partners irrespective of how well-connected populations are
across a landscape. In contrast, the emergence of strong trait
matching in multiple-partner mutualisms such as pollination may
be contingent upon gene flow between populations.

Third, the trait patterns observed in species-rich mutualisms
may be fragile in the face of processes leading to the disruption of
gene flow, such as habitat fragmentation. Habitat fragmentation
is one of the most widespread environmental impacts of human
activities (36). Because habitat fragmentation may disrupt gene
flow, genetic variability may wane in isolated populations, with
severe consequences for the persistence of such populations (37).
Our results suggest an additional effect of the gradual disruption
of gene flow: the loss of coadaptation in mutualistic systems. This
loss of coadaptation could, in turn, erode the potential robust-
ness of coevolved interaction networks to human disturbance (8).
We hypothesize, therefore, that habitat fragmentation may cause
species-rich mutualisms to lose their ecological effects over time,
with severe consequences for ecosystem services such as crop
pollination and regeneration of plant populations (38).

Materials and Methods

Single-Site Coevolutionary Model. We first used a single-site coevolutionary
model to explore the emergence of trait patterns (7) (SI Appendix). This
model is based on a selection gradient that connects trait evolution with
the mean fitness consequences of mutualisms. In this model, N populations
of distinct species interact mutualistically at a given site, and the mean value
of a single trait of each population (zi) evolves in discrete time. Trait zi medi-
ates mutualistic interactions (e.g., flower tube length, pollinator mouthpart
length) and affects the fitness consequences of the mutualism (mutualis-
tic selection) as well as other fitness components, such as abiotic factors
(environmental selection). The trait evolution of species i is described as
follows:
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where 'i is proportional to the slope of the selection gradient and to the
additive genetic variance of the trait, q

(t)
ij

represents the evolutionary effect

of species j on species i

⇣
0  q

(t)
ij

 1
⌘
, and ✓i is the trait value favored by the

environment. We assumed that mutualistic selection is mediated by trait
matching and, therefore, the trait value of species i favored by selection
imposed by species j is zj . The evolutionary effects q

(t)
ij

are defined as a
function of trait matching as:
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where mi measures the relative importance of all mutualistic interactions⇣
0 

P
N

j=1 q
(t)
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= mi  1
⌘
, aij is an element of A—the binary adjacency

matrix of a given mutualistic network—and ⌧ (t)
ij

is the level of trait match-

ing between i and j
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, in which ↵ controls the sensitivity of ⌧ (t)
ij

to differences
between traits. If species i and j do not interact in the mutualistic net-
work, then aij = 0 and q

(t)
ij

is an evolutionary forbidden link. In contrast, if

i and j are mutualistic partners, then aij = 1 and q
(t)
ij

changes through time
according to trait matching.

Two-Site Coevolutionary Model. We extended the single-site coevolutionary
model to a scenario with two mutualistic assemblages connected by gene
flow (SI Appendix), which is consistent with the concept of a spatial
metanetwork (31). We assumed that, at each generation, a fraction gi of
the individuals of species i migrate from site A to site B and from site B to
site A (0  gi  1). Thus, a fraction 1 � gi of all individuals in both popu-
lations remains at its own site. The mean trait value of species i at site A

changes according to the following equation:
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The term �(t)
z
i,B

and the equation for the evolutionary change in zi,B are

obtained by interchanging subscripts A and B in �(t)
z
i,A

and in Eq. 3. Impor-
tantly, model parameters ('i , mi , ✓i), species richness (N), and interaction
networks (aij) can all vary across sites, which allowed us to explore how
geographical variation in these components affects trait evolution (SI

Appendix).

Simulations of the Coevolutionary Models. We performed numerical simula-
tions of the coevolutionary models to investigate how mutualistic selection
(mi,A, mi,B) and gene flow (gi) influence the emergence of trait matching⇣
⌧ (t)

ij

⌘
(SI Appendix). First, we explored how mutualistic selection affects

reciprocal selection and trait matching in an isolated site by performing
simulations of the single-site model (Eq. 1), using different values of the
mean mutualistic selection in the network (m = 0.1, 0.3, 0.5, 0.7, 0.9). Then,
we focused on how the mean value of gene flow in the network (g), which
we varied from 0 to 0.3, affects the evolution of trait matching in two
connected hotspots (mA = mB = 0.7) in which reciprocal selection among
species was strong and in a hotspot connected to a coldspot (mA = 0.9, mB =
0.1) in which reciprocal selection was weak. For each combination of mA,
mB, and g, we performed 100 simulations of the two-site model (Eq. 3) per
empirical mutualistic network in our dataset (n = 72 networks, SI Appendix,
Table S1). In all simulations with the same empirical network, we parame-
terized the term aij by setting aij = 1 when species i and j interacted in the
network and aij = 0 otherwise. All other parameters ('i,A, 'i,B, ✓i,A, ✓i,B, ↵)

and initial trait values
⇣

z
(0)
i,A, z

(0)
i,B

⌘
were sampled at the beginning of each

simulation from statistical distributions (SI Appendix, Table S2). In each sim-
ulation, we recorded trait values through time and computed trait matching
for pairs of species

⇣
⌧ (t)

ij

⌘
as well as the mean value across all interacting

species
⇣
⌧ (t)

⌘
at both sites. The equilibrium values of trait matching

�
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and ⌧B
*
�

were calculated when species traits at both sites achieved asymp-

totic values, defined as
���z(t+1)

i,A � z
(t)
i,A

���< 10�6 and
���z(t+1)

i,B � z
(t)
i,B

���< 10�6. In
addition to performing simulations, we obtained analytical approxima-
tions of the coevolutionary models (Eqs. 1 and 3) to understand how trait
patterns emerge in mutualistic networks (SI Appendix). All of the codes
and empirical datasets required to reproduce our results are available at
https://github.com/wgar84/spatial coevo mutnet.

Empirical Dataset. Our dataset consisted of 72 empirical networks of both
terrestrial and marine mutualisms (SI Appendix, Table S1). We chose these
networks because they spanned diverse natural history attributes and net-
work structures. Our dataset included six types of mutualism that can be
divided into two broad categories: first, multiple-partner mutualisms in
which individuals may interact with dozens or hundreds of different part-
ners over a lifetime and form species-rich, nested networks—(i) ants that
protect plants with extrafloral nectaries (n = 5 networks), (ii) animals that
pollinate flowering plants (n = 28), (iii) fruit-eating vertebrates that disperse
the seeds of plants with fleshy fruits (n = 17), and (iv) fishes and shrimps that
clean client fishes (n = 3); second, intimate mutualisms in which individuals
create sustained interactions and form species-poor, modular networks: (v)
anemones that protect anemonefishes (n = 11) and (vi) ants that protect
their host plants, the myrmecophytes (n = 8).
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Network Structure. We quantified four widely used metrics to character-
ize the arrangement of interactions in our networks: (i) species richness,
(ii) connectance, (iii) nestedness, and (iv) modularity (SI Appendix). We
used only information on the presence and absence of interactions (i.e.,
1 and 0) to quantify these metrics. Species richness (N) is the total num-
ber of species in the network. Connectance (C) is the proportion of all
possible interactions that are in fact realized (14). Nestedness measures
how much the interactions of species with low degree values are proper
subsets of the interactions of species with higher degree values (15). We
quantified nestedness using the metric NODF (39). Finally, modularity mea-
sures how much the network is partitioned into groups of species with
many interactions within groups and few interactions among different
groups (33). We computed modularity using a simulated annealing algo-
rithm to optimize the value of a bipartite version of the metric Q (40).
Because network structure metrics are often highly correlated among each
other, we used PCA to describe how the values of our four metrics covary
across networks. We used the first and second principal components (PC1
and PC2) to describe the variation in network structure of our dataset
and to explore how network structure affects the emergence of trait
patterns.

Disruption of Gene Flow and Its Consequences for Coevolution. We used
our analytical approximation of the coevolutionary model to simulate the

progressive loss of gene flow in two initially connected mutualistic assem-
blages (SI Appendix). We began each simulation by building a matrix T
with mi,A = mi,B = 0.5 8 i and a high value of gene flow (gi = 0.3 8 i). We
used the ecological dependencies between interacting species (i.e., weights
in adjacency matrices; SI Appendix, Table S1) available for 29 networks in
our dataset as proxies for the evolutionary effects (qij) in T. Then, we per-
turbed T by randomly removing gene flow from an increasing proportion
of species (i.e., 0.05, 0.1, . . . , 0.95, 1 of species without gene flow). The sim-
ulation ended when all species had lost gene flow (gi = 0 8 i). After each
perturbation of matrix T, we sampled 10 different ✓ vectors using a statisti-
cal distribution and used our analytical equilibrium expression to calculate
trait values (z*) and trait matching (⌧ij

*). We performed simulations for many
different combinations of mi,A, mi,B, and gi (SI Appendix).
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1 Coevolutionary models

1.1 Single-site coevolutionary model

Here we present the details of the single-site coevolutionary model, which was developed by (1). In this

single-site model, we represented each of the N species that are part of a mutualistic network as a single

population. We modeled the evolution of the mean value of a single trait of each species (zi) by explicitly

defining the selection gradient that drives evolutionary change. We assumed that population sizes are large

enough for genetic drift to be negligible. We also assumed that the phenotypic variance of the trait (�2
zi) is

fixed through time, which is a reasonable approximation if population sizes are large and selection does not

modify the genetic variance. We considered that zi mediates mutualistic interactions between individuals

(e.g., flower tube length, pollinator mouthpart length) and a↵ects the fitness benefits of mutualism. In

addition to mutualism, zi also determines fitness components related to abiotic factors and other ecological

interactions (2, 3). Thus, zi is under selection imposed by mutualism (hereafter mutualistic selection) and

selection imposed by abiotic factors and other ecological interactions (hereafter environmental selection).

The change in the mean trait value of species i between generation t and generation t + 1 was derived

using the classical equation by (4):

z
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i = z

(t)
i + h

2
zi�

2
zi

@lnWi

@z
(t)
i

[S1]

where h
2
zi (0  h

2
zi  1) is the heritability of the trait of species i that we assumed to be constant over

time and @lnWi

@z(t)
i

is the selection gradient. We assumed that the adaptive landscape of each species, defined

by mutualistic and environmental selection, has a single adaptive peak at each generation. We incorporated

temporal variation in the adaptive peaks, which were reshaped over time by the trait evolution of all species

in the mutualistic assemblage. To do so, we defined a linear selection gradient as follows:
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in which ⇢i is a scaling constant that relates changes in mean fitness to changes in mean trait values and z
(t)
i,p

is the trait value that defines the adaptive peak of the population at generation t. We decomposed z
(t)
i,p into

two components, one related to mutualism and one related to the environment:
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In the equation above, q(t)ij is the interaction weight that describes the evolutionary e↵ect of species j on the

selection gradient of species i (0  q
(t)
ij  1). We defined that the sum of all evolutionary e↵ects acting on a

species is equal to the relative importance of mutualism as a selective pressure (i.e. 0 
PN

j=1 q
(t)
ij = mi  1).

Thus, parameter mi denotes the level of mutualistic selection and the term (1 �
PN

j=1 q
(t)
ij ) = (1 � mi)

represents the level of environmental selection. Finally, x(t)
ij is the trait value of species i favored by selection

imposed by species j and ✓i is the trait value favored by environmental selection, which we assumed to be

fixed over time.

We used one additional assumption to obtain a final equation describing the dynamics of trait zi at a

single site. We supposed that mutualistic selection favors the complementarity of traits, i.e., phenotype

matching (5, 2, 3). Thus, the selected trait value with respect to partner j at generation t is x
(t)
ij = z

(t)
j ,

2



which corresponds to the value that maximizes the trait matching between zi and zj . Using equations [S1],

[S2], and [S3] and the fact that h
2
zi =

�2
Gzi
�2
zi

, in which �
2
Gzi

is the additive genetic variance of trait zi, the

dynamics of trait zi may be described as follows (1):
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in which 'i is a compound parameter that depends on the additive genetic variance of the trait and on the

slope of the selection gradient ('i = �
2
Gzi

⇢i).

We now describe how q
(t)
ij , which represents the evolutionary e↵ect of species j on species i in relation to

all other mutualistic partners of i, changes through time. The term q
(t)
ij has two components that represent

how di↵erent traits mediate the fitness consequences of the interaction with species j. The first component

is related to trait zi and is given by the trait matching between zi and zj , which we defined using a gaussian

function as:

⌧
(t)
ij = e

�↵(z(t)
j �z(t)

i )2 [S5]

where the parameter ↵ controls the sensitivity of ⌧
(t)
ij to di↵erences between traits and was assumed to

be the same for every species and to be fixed over time. The value of ⌧ (t)ij is 1 when there is maximum

matching (z(t)j = z
(t)
i ) and approximates 0 if trait matching is poor. This gaussian function is widely used

in coevolutionary models to represent trait matching (1, 2, 3, 6). The second component is the binary term

a
(t)
ij , which encapsulates the e↵ects of a suite of other traits not explicitly modeled by us and defines if an

interaction is allowed to occur (a(t)ij = 1) or represents an evolutionary forbidden link (a(t)ij = 0) (7). We

assumed that zi evolves at a faster rate than all other traits associated with the interaction and, therefore,

a
(t)
ij may be considered fixed (i.e., a

(t)
ij = aij). We also assumed that the genetic covariance between zi

and other traits related to the mutualism is negligible, which allowed us to consider these two components

independently. The combination of the two components leads to:

q
(t)
ij = mi

aij⌧
(t)
ij

PN
k=1 aik⌧

(t)
ik

[S6]

In our simulations, we parameterized aij and species richness (N) using the binary adjacency matrices A

of our dataset (Table S1). In matrix A (N ⇥ N), the row and column i represent species i and the binary

element aij indicates if species i and j interact in the mutualistic assemblage. Therefore, matrix A imposes a

fixed structure of potential interactions, whereas q(t)ij changes through time and defines a dynamic structure

of the evolutionary strength of interactions.

1.2 Two-site coevolutionary model

We extended the single-site coevolutionary model to a two-site model in order to incorporate simple

geographical variation in selection and gene flow. In our two-site model, one population of each species

occurs in each site, with NA species at site A and NB species at site B. At each site, species engage in

mutualistic interactions, forming a local mutualistic network. We considered that, after selection operates at

generation t, a fraction g
(t)
i of the population of species i migrates from site A to site B and from site B to

site A and a fraction (1� g
(t)
i ) remains at its own site. Therefore, we supposed that migration is symmetric

between sites, which would not alter population sizes through time. We also assumed that migration ability
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is a fixed property of each species and does not change over time, which allowed us to set g(t)i = gi. Finally,

we assumed that local individuals and migrants mate randomly, which allowed us to use gi as a measure of

gene flow. Thus, our two-site model describes coevolutionary dynamics in a metanetwork (8, 9) consisting

of two local mutualistic networks connected by gene flow. These assumptions allowed us to implement gene

flow as a process that mixes trait values across sites, as in other coevolutionary models (e.g., (2)), leading to

the following equation for the change in trait zi,A of species i at site A:

z
(t+1)
i,A = (1� gi)(z

(t)
i,A + �

(t)
zi,A) + gi(z

(t)
i,B + �

(t)
zi,B ) [S7]

where �(t)zi,A and �
(t)
zi,B are the evolutionary changes for both population of species i as defined in equation [S4]:

�
(t)
zi,A = 'i,A

h NAX

j=1

q
(t)
ij,A(z

(t)
j,A � z

(t)
i,A) + (1�

NAX

j=1

q
(t)
ij,A)(✓i,A � z

(t)
i,A)

i
[S8]

�
(t)
zi,B = 'i,B

h NBX

j=1

q
(t)
ij,B(z

(t)
j,B � z

(t)
i,B) + (1�

NBX

j=1

q
(t)
ij,B)(✓i,B � z

(t)
i,B)

i
[S9]

All model parameters have the same definitions as in the single-site coevolutionary model and q
(t)
ij,A and q

(t)
ij,B

are defined as in equations [S5] and [S6]. Most of the analyses described in the next sections are restricted

to the case in which both sites have the same species composition (NA = NB = N) and mutualistic network

(matrix A). These analyses allowed us to gain insight into how species coevolve under simple spatial scenarios

by deriving the evolutionary dynamics from first principles and without the complicating e↵ects of spatial

turnover in species composition and mutualistic interactions. However, because spatial turnover is observed

in many spatial studies of mutualistic networks (10, 11, 9), we performed sensitivity analyses in which species

composition and mutualistic interactions vary across sites. Furthermore, in all of our analyses, the parameters

'i, mi, and ✓i could be di↵erent for the two populations of each species i, generating distinct local adaptive

landscapes for each population. This allowed us to explore the main focus of this study: how geographical

variation in mutualistic selection (mi,A and mi,B) and gene flow (gi) may a↵ect trait evolution in mutualistic

networks.

2 Gene flow, geographical variation in selection and the evolution

of trait patterns

2.1 Numerical simulations

We performed numerical simulations of our two-site coevolutionary model to understand how gene flow

(gi) and geographical variation in mutualistic selection (mi,A andmi,B) a↵ect trait evolution. Simulations and

analyses were performed in R 3.3.2 (12) and all codes are available at www.github.com/wgar84/spatial_

coevo_mutnet. Our first step in performing simulations was to choose a mutualistic assemblage and to

parameterize the number of species (N) and the adjacency matrix A (i.e., aij values) using the empirical

information (Table S1). Next, we sampled initial trait values (z(0)i,A and z
(0)
i,B) and parameter values (mi,A,mi,B ,

gi, ✓i,A, ✓i,B , 'i,A, 'i,B) for each species at both sites from statistical distributions (Table S2). Therefore,

except for the parameter ↵, which was the same for all species, we incorporated variation in parameter values

across species and across sites. We then iterated equation [S7] until changes in trait values were less then
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10�6 (i.e., |z(t+1)
i,A � z

(t)
i,A| < 10�6 and |z(t+1)

i,B � z
(t)
i,B | < 10�6). This threshold was more than su�cient for

traits to reach equilibrium values (Fig. S1). For each simulation, we recorded trait values through time and

calculated trait matching (⌧ (t)ij ) using equation [S5] and setting the constant ↵ to 0.2. We used ⌧
(t)
ij as our

metric for trait matching because it is linked to our coevolutionary model and because it is correlated with

another trait matching metric that is also based on di↵erences between traits of interacting partners (13).

We also calculated the mean trait matching for all interacting species pairs as:

⌧
(t) =

PN
i=1

PN
j=1 aij⌧

(t)
ijPN

i=1

PN
j=1 aij

[S10]

We performed simulations according to several di↵erent scenarios in order to extensively explore the

parameter space. In the main text, we report the results of our two main scenarios of geographical variation

in selection, which consist of two hotspots (mA = mB = 0.7) and a hotspot and a coldspot (mA = 0.9

and mB = 0.1). Here, we report the simulation results of our complete set of 15 combinations of mA and

mB (Table S2, Fig. S2). For each combination of mA and mB , we explored 31 di↵erent values of gene

flow (g = 0, 0.01, 0.02, ..., 0.28, 0.29, 0.3). For each combination of mutualistic selection and gene flow, we

performed 100 simulations per empirical network (n = 72 networks, total = 3,348,000 simulations). Note

that, when g = 0, the two-site coevolutionary model (eq. [S7]) becomes identical to the single-site model (eq.

[S4]), which allowed us to explore the coevolutionary dynamics of isolated sites as well (see below). These

simulations allowed us to investigate how trait patterns emerge in mutualistic networks in several distinct

scenarios of geographical variation in selection and gene flow across sites.

Although the scenarios outlined above allowed us to explore how gene flow and geographical variation in

selection a↵ect the emergence of trait patterns, other parameters may a↵ect trait evolution. In the main text,

we showed how network properties contained in the adjacency matrixA a↵ect the emergence of trait matching

(Fig. 3). Here, we report additional evidence that network structure modulates the e↵ects of gene flow and

mutualistic selection on trait evolution (Fig. S2, S3). Furthermore, we present simulation results for other

parameterizations for ✓i,A, ✓i,B , 'i,A, 'i,B , and ↵ (Table S2; see Simulations with di↵erent parameterizations),

and for two other situations: when gene flow is correlated with the number of interactions of each species

(see Simulations with gene flow correlated with species degree) and when there is spatial species turnover (see

Simulations with spatial species turnover). We show that the majority of these other parameterizations do

not qualitatively change our main conclusions of how gene flow a↵ects the emergence of trait matching (Fig.

S5, S6, S7).

2.1.1 Single-site coevolutionary model

We performed simulations without gene flow (i.e., g = 0) and with the same parameter choices of the

main text (Table S2) to understand how mutualistic selection (m) a↵ects the strength of reciprocal selection

and the emergence of trait matching throughout the simulations (Fig. S1). We measured the reciprocity of

selection between mutualistic partners i and j at time t using the pairwise evolutionary e↵ects between these

two species (eq. [S6]). We calculated the reciprocity of selection in log to avoid multiplying q
(t)
ij values close

to zero:

log(r(t)ij ) = log
⇣q(t)ij

mi

⌘
+ log

⇣q(t)ji

mj

⌘
[S11]
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Higher values of log(r(t)ij ) indicate that the selective pressures that species i and j exert on each other are more

reciprocal. We calculated the mean reciprocity of selection for all pairs of species in the network (log(r(t)))

through time for each simulation.

We found that higher values of mutualistic selection lead to stronger reciprocal selection (Fig. S1A) and

to higher values of trait matching over time (Fig. S1B). These results allowed us to define a site with a high

value of m as a hotspot and a site with a low value of m as a coldspot. Furthermore, these results served as

a baseline for our results of the two-site coevolutionary model (see below).

2.1.2 Two-site coevolutionary model

In addition to the two combinations of mutualistic selection presented in the main text (mA = mB = 0.7

and mA = 0.9,mB = 0.1), we performed simulations using 13 other combinations of mutualistic selection

(Table S2). Our results indicate that higher values of gene flow (g) favor higher levels of trait matching at

equilibrium (⌧⇤) for most scenarios of geographical variation in mutualistic selection (Fig. S2). However,

increasing gene flow causes trait matching to decrease in a hotspot when it is connected to a coldspot (e.g.,

mA = 0.9,mB = 0.1, Fig. S2).

2.1.3 E↵ect of gene flow on pairwise trait matching

Our previous results show that gene flow may cause the mean trait matching among all interacting

species to increase in mutualistic networks (Fig. S2). We now present our results of how gene flow a↵ects

the evolution of trait matching in di↵erent pairs of interacting species. We first calculated the number of

interactions (or degree) of each species i in a network as ki =
PN

j=1 aij . We then explored how gene flow

a↵ects the trait matching between species i and j (⌧ (t)ij ) depending on the degree of both species (i.e., ki and

kj). By doing so, we aimed to understand how gene flow a↵ects the coevolutionary dynamics of mutualistic

partners when the number of selective pressures acting upon the two interacting species (i.e., number of

additional interaction partners) varies. We measured the equilibrium value of trait matching (⌧⇤ij) for every

pair of species in our simulations using the complete dataset (72 empirical networks, 7,239 pairs of species).

We computed (⌧⇤ij) using the results of our two main scenarios of mutualistic selection (mA = mB = 0.7 and

mA = 0.9, mB = 0.1) with and without gene flow (g = 0.3 and g = 0, respectively). Because we performed

100 simulations per network for every combination of mA, mB , and g, we calculated the average value of

equilibrium trait matching for each pair of species across the 100 simulations (⌧⇤ij). Note that ⌧⇤ij is di↵erent

from ⌧
⇤ (eq. [S10]), which is the mean equilibrium trait matching for all pairs of species in a given network.

Our final step was to calculate the di↵erence between the mean pairwise trait matching with gene flow and

without gene flow (⌧⇤ij,g=0.3 � ⌧
⇤
ij,g=0) for each pair of species i and j.

Our results show that the higher the degree of both interacting species, the greater the di↵erence between

pairwise trait matching with (⌧⇤ij,g=0.3) and without gene flow (⌧⇤ij,g=0, Fig. S3). In two hotspots (mA =

mB = 0.7), pairs of specialist species (i.e., both species have low degree values) evolve high levels of trait

matching in the presence or absence of gene flow (Fig. 2). Pairs of generalist species (i.e., both species have

high degree values), on the other hand, evolve high levels of trait matching only in the presence of gene flow

(Fig. 2). Hence, pairs of generalist species show greater di↵erences in trait matching with and without gene

flow than pairs of specialist species (Fig. S3A). In a hotspot and a coldspot (mA = 0.9 and mB = 0.1), we

also observe a greater di↵erence in pairwise trait matching for pairs of generalist species (Fig. S3B). However,

because trait matching values in the hotspot (i.e., site A) are higher in the absence of gene flow, di↵erences

in pairwise trait matching with and without gene flow are negative for this scenario (Fig. S3B). These results
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demonstrate that the changes we observe in mean trait matching (⌧⇤) as we increase gene flow (Fig. 2, Fig.

S2) are a consequence of changes in pairwise trait matching among generalist species.

2.1.4 E↵ect of gene flow on environmental matching and geographical divergence

In our simulations of the two-site coevolutionary model, we also measured how well matched species

traits are to the value selected by the local environment (✓i,A or ✓i,B) and how divergent are the traits of

the two populations of the same species (z(t)i,A and z
(t)
i,B). We used our expression for trait matching (eq.

[S5]) to calculate these two quantities, which we called environmental matching and geographical divergence,

respectively. The environmental matching of trait z(t)i,A at generation t was calculated as:

"
(t)
i,A = e

�↵(✓i,A�z(t)
i,A)2 [S12]

where ↵ is a constant set to 0.2. We calculated "
(t)
i,B using equation [S12] with subscript B instead of A. The

value of "(t)i,A ("(t)i,B) is 1 when trait z
(t)
i,A (z(t)i,B) is completely coupled with its local environmental optimum

and it approaches 0 when the trait value is very far from ✓i,A (✓i,B). The geographical divergence of the trait

of species i at generation t was calculated as:

�
(t)
i = e

�↵(z(t)
i,B�z(t)

i,A)2 [S13]

where ↵ was also set to 0.2. The value of �(t)
i is 1 when both traits have the same value (i.e., z(t)i,A = z

(t)
i,B)

and it approaches 0 when z
(t)
i,A and z

(t)
i,B are very di↵erent from each other. In addition to calculating the

environmental matching and geographical divergence for each species, we also quantified these metrics for

the entire network by taking the average across all species ("(t)A , "(t)B , �(t)). We computed the equilibrium

values of the mean environmental matching and mean geographical divergence ("⇤A, "
⇤
B , and �

⇤) for all our

simulations using our two main scenarios of mutualistic selection (mA = mB = 0.7 and mA = 0.9, mB = 0.1)

and all values of gene flow (g = 0, 0.01, ..., 0.29, 0.3).

We found that the mean environmental matching at equilibrium decreases as gene flow increases irrespec-

tive of the values of mutualistic selection (Fig. S4A). This result confirms our expectation that gene flow

reduces the local adaptation of each population to its local environment by mixing the phenotypes of distinct

populations. Furthermore, we found that the mean geographical divergence at equilibrium also decreases as

gene flow increases for both combinations of mutualistic selection (Fig. S4B). Thus, as expected, gene flow

causes the trait values of di↵erent populations of the same species to become more similar to each other.

By causing species traits to move away from their local environmental optima and to become homogeneous

across sites, gene flow allows mutualistic selection to gain importance and trait matching to increase (Fig. 2,

Fig. S2).

2.1.5 Simulations with di↵erent parameterizations

In this first set of sensitivity analyses, we performed simulations to investigate how the parameters ✓i,A,

✓i,B , 'i,A, 'i,B , and ↵ a↵ect trait evolution in mutualistic networks across space. In these analyses, we

changed the value or sampling distribution of one parameter while maintaining the other parameters un-

changed. In our main set of simulations, presented above and in the main text, we sampled ✓i,A from a

uniform distribution between 0 and 10, ✓i,B from a uniform distribution between 10 and 20, 'i,A and 'i,B

both from a normal distribution with mean 0.5, and ↵ was set to 0.2 (Table S2). Here, we present simulation
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results for four additional parameterizations for ✓i,A and ✓i,B , two additional parameterizations for 'i,A and

'i,B , and two additional parameterizations for ↵ (Table S2). In these additional simulations, we used two

combinations of mutualistic selection (mA = mB = 0.7 and mA = 0.9, mB = 0.1) and 13 values of gene flow

(g = 0, 0.025, 0.05, ..., 0.25, 0.275, 0.3). We used a random sample of 36 empirical networks of our complete

dataset (Table S1), but established a priori that our sample would include all types of mutualism and would

have a variation in network structure similar to our complete dataset (Table S1). For each combination of

mA, mB , g, ✓i,A, ✓i,B , 'i,A, 'i,B , and ↵ we performed 50 simulations per empirical network (n = 36 networks,

total = 374,400 simulations).

We first present our results for the di↵erent parameterizations of ✓i,A and ✓i,B . In our main parameteriza-

tion (✓i,A ⇠ U [0, 10], ✓i,B ⇠ U [10, 20]), we assumed that environmental factors select for lower trait values at

site A than at site B. Such geographical variation in environmental selection is observed for many systems of

interacting species (14, 15, 16, 17). In our first additional parameterization, we assumed that the environmen-

tal optima have the same distribution at both sites (✓i,A ⇠ U [0, 10], ✓i,B ⇠ U [0, 10]). In our second additional

parameterization, we assumed that site A select for lower trait values than site B, but the distributions of

environmental optima overlap (✓i,A ⇠ U [0, 10], ✓i,B ⇠ U [5, 15]). In our third additional parameterization,

we assumed that site A select for much lower trait values than site B (✓i,A ⇠ U [0, 10], ✓i,B ⇠ U [20, 30]).
Importantly, ✓i,A and ✓i,B are sampled independently in all the parameterizations described so far.

Our results for these three additional parameterizations show that the mean distance between the two

distributions (✓i,A and ✓i,B) does not a↵ect our conclusions of how gene flow and geographical variation in

mutualistic selection influence trait matching (Fig. S5A-C). Although the variance of the distribution could

a↵ect our results, we show below by changing the value of ↵ that this is not the case. Finally, in our fourth

additional parameterization, we assumed that there is a correlation between the trait values selected at site A

and those selected at site B, that is, ✓i,A and ✓i,B were not sampled independently. For these simulations, we

sampled environmental optima for site A (✓i,A ⇠ U [0, 10]) and we defined environmental optima for site B as

✓i,B = ✓i,A +N [µ = 10,�2 = 1]. Using this sampling procedure, the mean correlation between ✓i,A and ✓i,B

values was 0.944 (n = 46,800 simulations). Our simulations using this fourth parameterization showed that

gene flow does not favor trait matching when ✓i,A and ✓i,B are highly correlated (Fig. S5D). Given indirect

coevolutionary e↵ects (1), we can interpret ✓i,A and ✓i,B values as key components of the local selection

regime of each species in the network. Our results show that gene flow favors trait matching only when the

selection regime of each species varies geographically (i.e., ✓i,A and ✓i,B are uncorrelated).

We now present our results for the di↵erent parameterizations of 'i,A and 'i,B . In our main param-

eterization, we assumed that the distribution of 'i,A and 'i,B is the same for both sites and we sampled

these parameters from a normal distribution (N [µ = 0.5,�2 = 0.0001]). We performed simulations using two

additional parameterizations in which we set the mean of the normal distribution to 0.1 and 1 (Table S2).

These simulations show that di↵erent parameterizations for 'i,A and 'i,B do not change our conclusions

about how gene flow and mutualistic selection a↵ect trait matching (Fig. S5E, F). Therefore, although 'i,A

and 'i,B have an e↵ect on the speed of the coevolutionary dynamics (1), these parameters do not a↵ect the

emergence of trait matching.

Finally, we also performed simulations with di↵erent parameterizations for ↵. In our main parameteri-

zation, we assumed that ↵ is the same for every species and is fixed over time and we set the value of this

parameter to 0.2. We performed simulations using two additional parameterizations in which we set the value

of ↵ to 0.05 and 0.8 (Table S2). Note that multiplying trait di↵erences (i.e., z(t)j � z
(t)
i ) by a constant c has
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the same e↵ect on trait matching (eq. [S5]) as multiplying ↵ by c
2, because:

e
�↵[c(z(t)

j �z(t)
i )]2 = e

�(↵c2)(z(t)
j �z(t)

i )2 [S14]

Therefore, because trait values (z(t)i,A and z
(t)
i,B) in our simulations follow the same distribution as ✓i,A and

✓i,B , respectively (Table S2), changing ↵ has the same e↵ect on trait matching as modifying the range of ✓i,A

and ✓i,B values. In particular, by multiplying ↵ = 0.2 by 1
4 to obtain ↵ = 0.05 and by 4 to obtain ↵ = 0.8,

we are also testing the e↵ect of shrinking and expanding, respectively, the range of both ✓i,A and ✓i,B by 2.

Our simulations parameterized by ↵ = 0.05 and ↵ = 0.8 show that di↵erent values of ↵ do not change our

results of how gene flow a↵ect trait matching (Fig. S5G, H). Hence, our main conclusions of how gene flow

and geographic variation in selection a↵ect trait matching are robust to several changes in the parameters of

our coevolutionary model.

2.1.6 Simulations with gene flow correlated with species degree

In this second set of sensitivity analyses, we explored how the correlation between gene flow (gi) and the

number of interactions of each species, (species degree, ki) may a↵ect our previous results. To do so, we

performed simulations in which we imposed the highest possible positive correlation between the vector of gene

flow values (g1, g2, ..., gN ) and the vector of species degree values (k1, k2, ..., kN ) by aligning the two ordered

vectors before simulating the coevolutionary dynamics. These simulations allowed us to explore a scenario

in which generalist species are locally more abundant than specialist species (18) and, therefore, have more

individuals migrating across sites. In these simulations, we used two combinations of mutualistic selection

(mA = mB = 0.7 and mA = 0.9, mB = 0.1) and 13 values of gene flow (g = 0, 0.025, 0.05, ..., 0.25, 0.275, 0.3).

In order to better explore the association between gene flow and species degree, we introduced a larger

variation in gene flow values across species in these simulations than in previous simulations (Table S2).

Finally, we used a random sample of 36 empirical networks of our complete dataset (Table S1). For each

combination of mA, mB , and g we performed 50 simulations per empirical network (n = 36 networks, total

= 46,800 simulations).

In the simulations with gene flow (i.e., g > 0), the mean value of Spearman’s rank correlation between

gene flow and species degree was 0.92 ± 0.07 (mean ± sd, n = 43,200). Our results show that the e↵ect of

gene flow on the emergence of trait matching does not change when we impose a positive correlation between

gene flow and species degree (Fig. S6).

2.1.7 Simulations with spatial species turnover

In this final set of sensitivity analyses, we investigated the e↵ects of spatial species turnover on the

emergence of trait matching in mutualistic networks. The turnover of species and their interactions across

landscapes is the outcome of a complex interplay between several ecological and evolutionary processes (19, 9).

Our aim in these sensitivity analyses was to explore how a simple scenario of species turnover could a↵ect our

previous results. To do so, we explored the scenario in which generalist species have broad geographic ranges

(9, 20). We assumed that the geographical range of each species is proportional to its degree and randomly

removed species from each local network (site A and site B) with a probability based on the degree. Before

removing species, both local networks consisted of the same empirical network. In order to always maintain

a core of generalist species in both local networks, we defined the probability of removing a species as pi = 0

if ki � k or pi = 1� ki

k
if ki < k, where k is the mean degree value in the network. Thus, species with degree
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values greater or equal to k always remained at both local networks and the other species were removed

independently from each network according to pi. After removing species from both networks according to

this process, we simulated the coevolutionary dynamics according to equation [S7]. Our removal procedure

generated three groups of species: (i) species present at site A and site B that could be a↵ected by gene

flow across sites, (ii) species present at either site A or site B that coevolved locally without the e↵ects of

gene flow, and (iii) species removed from both sites that did not participate in the coevolutionary dynamics.

In these simulations, we used two combinations of mutualistic selection (mA = mB = 0.7 and mA = 0.9,

mB = 0.1), 13 values of gene flow (g = 0, 0.025, 0.05, ..., 0.25, 0.275, 0.3), and a random sample of 36 empirical

networks of our complete dataset (Table S1). For each combination of mA, mB , and g we performed 50

simulations per empirical network (n = 36 networks, total = 46,800 simulations).

In our simulations, the mean fraction of species removed from each network was 0.33± 0.12 (mean ± sd,

n = 93,600). We found that, when we allow species composition to vary across space, gene flow has the same

e↵ects on trait matching as observed previously (Fig. S7). Although the e↵ects of gene flow seem weaker

for intimate mutualisms in these simulations, the e↵ects of gene flow are still strong for multiple-partner

mutualisms (Fig. S7).

Overall, our simulations that imposed a correlation between gene flow and species degree (see Simulations

with gene flow correlated with species degree) and our simulations with species turnover confirm the important

role of generalist species for multispecies coevolution across space. Because gene flow increases trait matching

at the network level mainly because of trait changes in generalist species, we should expect gene flow to have

an important role in promoting coadaptation whenever generalist species are present at multiple locations

and migrate between them.

2.2 Analytical approximations

2.2.1 Single-site coevolutionary model

We used analytical approximations of the coevolutionary models (eq. [S4] and [S7]) to understand how

trait patterns emerge in mutualistic networks. In this section, we present the analytical expression for the

equilibrium of the single-site coevolutionary model (eq. [S4]) as originally developed by (1). To obtain this

analytical expression, we assumed that the evolutionary e↵ects q(t)ij are fixed over time (i.e., q(t)ij = qij). We

find the equilibrium by setting z
(t+1)
i = z

(t)
i = z

⇤
i in equation [S4]:

0 = 'i

h NX

j=1

qij(z
⇤
j � z

⇤
i ) + (1�

NX

j=1

qij)(✓i � z
⇤
i )
i

[S15]

z
⇤
i =

NX

j=1

qijz
⇤
j + (1�

NX

j=1

qij)✓i [S16]

Using the fact that
PN

j=1 qij = mi, equation [S16] can be rewritten as:

z
⇤
i =

NX

j=1

qijz
⇤
j + (1�mi)✓i [S17]
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The above equation may be written for all the N species in the mutualistic assemblage as:

z⇤ = Qz⇤ + ✓ [S18]

where z⇤, ✓, Q, and  are the following vectors and matrices:

z⇤ =

2

66664

z
⇤
1

z
⇤
2
...

z
⇤
N

3

77775
, ✓ =

2

66664

✓1

✓2

...

✓N

3

77775
, Q =

2

66664

q11 q12 · · · q1N

q21 q22 · · · q2N

...
...

. . .
...

qN1 qN2 · · · qNN

3

77775
,  =

2

66664

1�m1 0 · · · 0

0 1�m2 · · · 0
...

...
. . .

...

0 0 · · · 1�mN

3

77775

Equation [S18] may be further simplified, leading to the final equation in matrix form for the equilibrium of

the single-site model:

z⇤ = (I�Q)�1 ✓ [S19]

where I is the identity matrix of dimension N . As described in detail in (1), the coevolutionary matrix

T = (I�Q)�1 contains the direct and indirect e↵ects that link the equilibrium trait value of each species

(z⇤i ) to all values favored by the local environment (✓). In particular, each element tij of T contains all the

direct and indirect e↵ects of species j on the selection gradient shaping the trait evolution of species i. Thus,

row i of T defines the mutualistic adaptive landscape of species i.

2.2.2 Two-site coevolutionary model

We now present our analytical expression for the equilibrium of the two-site coevolutionary model. To

obtain this expression we assumed that evolutionary e↵ects at both sites are fixed over time (i.e., q(t)ij,A = qij,A

and q
(t)
ij,B = qij,B) and that 'i,A = 'i,B = 1 for every species i. Our sensitivity analyses show that setting

'i,A = 'i,B = 1 does not change our results of how trait matching emerges in the two-site model (Fig. S2F).

Although species composition (NA and NB) and network structure may change across sites in our analytical

approximation, we focused on the simple case in which both sites contain the same species composition and

mutualistic network (NA = NB = N). For site A, we find an expression for the equilibrium by setting

z
(t+1)
i,A = z

(t)
i,A = z

⇤
i,A and z

(t)
i,B = z

⇤
i,B in equation [S7]:

z
⇤
i,A = (1� gi)

h
z
⇤
i,A +

NX

j=1

qij,A(z
⇤
j,A � z

⇤
i,A) + (1�

NX

j=1

qij,A)(✓i,A � z
⇤
i,A)

i

+ gi

h
z
⇤
i,B +

NX

j=1

qij,B(z
⇤
j,B � z

⇤
i,B) + (1�

NX

j=1

qij,B)(✓i,B � z
⇤
i,B)

i
[S20]

z
⇤
i,A = (1� gi)

h NX

j=1

qij,Az
⇤
j,A + (1�mi,A)✓i,A

i
+ gi

h NX

j=1

qij,Bz
⇤
j,B + (1�mi,B)✓i,B

i
[S21]

In the equation above we also used the fact that
PN

j=1 qij,A = mi,A and
PN

j=1 qij,B = mi,B . We can now

write equation [S21] using vectors and matrices to represent all species in both mutualistic assemblages:

z⇤ = G(Qz⇤ + ✓) [S22]
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where z⇤, ✓, G, Q, and  are vectors and matrices similar to the ones for the single-site model, but they

are expanded to include the variables for both sites:

z⇤ =

2

66666666664

z
⇤
1,A
...

z
⇤
N,A

z
⇤
1,B
...

z
⇤
N,B

3

77777777775

, ✓ =

2

66666666664

✓1,A

...

✓N,A

✓1,B

...

✓N,B

3

77777777775

, G =

2

66666666664

1� g1 · · · 0
...

. . .
...

0 · · · 1� gN

g1 · · · 0
...

. . .
...

0 · · · gN

g1 · · · 0
...

. . .
...

0 · · · gN

1� g1 · · · 0
...

. . .
...

0 · · · 1� gN

3

77777777775

Q =

2

66666666664

q11,A · · · q1N,A

...
. . .

...

qN1,A · · · qNN,A

0

0

q11,B · · · q1N,B

...
. . .

...

qN1,B · · · qNN,B

3

77777777775

,  =

2

66666666664

1�m1,A · · · 0
...

. . .
...

0 · · · 1�mN,A

0

0

1�m1,B · · · 0
...

. . .
...

0 · · · 1�mN,B

3

77777777775

We now simplify equation [S22] further to obtain our final equilibrium expression in matrix form:

G�1z⇤ �Qz⇤ =  ✓ [S23]

z⇤ = (G�1 �Q)�1 ✓ [S24]

In the equation above, the matrix T = (G�1 �Q)�1 now contains the matrix G�1 instead of the identity

matrix. If we assume that gi is the same for every species i and that gi 6= 0.5 (if gi = 0.5, G is not invertible),

then G�1 has the following structure:

G�1 =

2

66666666664

1 + g
1�2g · · · 0
...

. . .
...

0 · · · 1 + g
1�2g

� g
1�2g · · · 0
...

. . .
...

0 · · · � g
1�2g

� g
1�2g · · · 0
...

. . .
...

0 · · · � g
1�2g

1 + g
1�2g · · · 0
...

. . .
...

0 · · · 1 + g
1�2g

3

77777777775

Therefore, if g = 0, G�1 = I and the equilibrium expression becomes identical to the expression for the

single-site model. However, if 0 < g < 1 (g 6= 0.5), then G�1 enables indirect coevolutionary e↵ects

that connect populations at site A with populations at site B. In this sense, this expanded version of T

provides both the local coevolutionary e↵ects (diagonal blocks) and the geographical coevolutionary e↵ects

(o↵-diagonal blocks) that reshape species traits given the local level of mutualistic selection ( ) and the

local environmental selective pressures (✓). The element tij of T contains all the direct and indirect e↵ects of

population j on the selection gradient shaping the trait evolution of population i, which may co-occur or not

with population j. Therefore, row i of T represents an enlarged adaptive landscape for species i, containing

local and spatial coevolutionary e↵ects. Below, we describe a property of the matrix T that is associated

12



with the emergence of trait patterns in mutualistic assemblages.

2.2.3 Matrix T and the emergence of trait matching

Our analytical study shows that trait values at equilibrium (z⇤) are connected to environmental optimum

values (✓) through a matrix (T) containing coevolutionary e↵ects. In the single-site model, T contains

local coevolutionary e↵ects and in the two-site model, T contains coevolutionary e↵ects within and between

communities. Here we describe a property of T that is related to the emergence of trait matching in both

models. In the single-site model, row i of T represents how all species in the network directly or indirectly

a↵ect the adaptive landscape of species i. Because the element z
⇤
i in z⇤ is the result of the dot product

of row i of T and ✓, two identical rows in T lead to two identical trait values in z⇤, regardless of the

values in the vector ✓. In other words, if the mutualistic adaptive landscapes of two species are identical,

their equilibrium trait values will be the same. In this sense, similar rows in the matrix T should lead to

similarity in equilibrium trait values (i.e., trait convergence) and, as a consequence, to trait matching between

interacting species.

We developed a metric to measure the similarity among rows of T. We called our metric the similarity of

adaptive landscapes and calculated it as the mean correlation among all rows of T. We now describe how we

used our simulation results and additional empirical information on mutualistic interactions to investigate

how mutualistic selection (mi,A, mi,B) and gene flow (gi) a↵ect the similarity of adaptive landscapes, leading

to the emergence of trait matching. We first explored our results for the single-site coevolutionary model

to understand the e↵ect of mi. To do so, we used the equilibrium trait values and parameter values of our

simulations in order to build the matrices Q and  , which make up the matrix T. Note that we used only the

mean value of mutualistic selection to build matrix  (i.e., mi = m 8 i), for simplicity. For each simulation

result, we built the matrix T = (I�Q)�1 and calculated the correlation among all possible pairs of rows.

We then computed the mean correlation value and defined this value as the similarity of adaptive landscapes.

Finally, we calculated the equilibrium trait values (z⇤i ) using the ✓i values and our equilibrium expression

(eq. [S19]). We then computed the mean equilibrium trait matching using equation [S10].

Our analyses show that higher values of mutualistic selection (mi) lead to a greater similarity of mutualistic

adaptive landscapes in the network (Fig. S8). As shown in Fig. S8, this result is a consequence of the fact

that indirect e↵ects become stronger when mutualistic selection is higher (1). We also found that a greater

similarity of adaptive landscapes is associated with higher values of trait matching in our simulations for all

types of mutualism (Fig. S9).

Our next step was to analyze how gene flow (gi) a↵ects the similarity of adaptive landscapes in the

matrix T in two hotspots (mA = mB = 0.7) and in a hotspot and a coldspot (mA = 0.9 and mB = 0.1). As

described above for the single-site model, we used the equilibrium trait values and parameter values of our

simulations in order to build the matrix T = (G�1 � Q)�1 . We used the mean values of gene flow and

mutualistic selection (i.e., gi = g, mi,A = mA, mi,B = mB 8 i) to build G and  , respectively. For each

simulation result, we built the matrix T, calculated the mean correlation among its rows, and computed the

mean equilibrium trait matching for each site using our analytical expression (eq. [S24]) and trait matching

formula (eq. [S10]).

We found that, with two hotspots, gene flow (gi) favors the similarity of mutualistic adaptive landscapes

in the matrix T (Fig. S10). By promoting indirect coevolutionary e↵ects that connect species present in

di↵erent sites, gene flow makes mutualistic adaptive landscapes more similar to each other (Fig. S10). As

a result, gene flow favors the emergence of trait matching in our simulations with two hotspots for all types
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of mutualism (Fig. S11A). However, when a hotspot is connected to a coldspot, gene flow decreases the

similarity of adaptive landscapes and, as a consequence, inhibits the emergence of trait matching for all

types of mutualism (Fig. S11B). Therefore, by measuring how mutualistic selection and gene flow a↵ect an

important property of the matrix T, we showed how these parameters can allow trait matching to emerge

by homogenizing adaptive landscapes of di↵erent species through local and spatial indirect coevolutionary

e↵ects.

3 Network structure and the evolution of trait patterns

Having shown that gene flow favors the emergence of trait matching in mutualistic networks, our next

step was to investigate how the organization of interactions in these networks a↵ects trait evolution. To do

so, we measured four metrics of network structure and performed a Principal Component Analysis (PCA) to

summarize the variation in network structure of our dataset (Table S1). Here we describe in detail how we

characterized network structure and performed our PCA.

3.1 Network structure metrics

Each mutualistic network in our dataset is composed of two distinct sets of species (e.g., pollinators and

plants) and interactions only occur between species of di↵erent sets. To quantify structural metrics, we

represented each network as a bipartite matrix B containing the N1 species of the first set on the rows and

the N2 species of the second set on the columns. In matrix B (N1 ⇥ N2), an element bij = 1 if species i

and j interact as mutualistic partners or bij = 0 if they do not interact. Note that the adjacency matrix A

used to parameterize the coevolutionary models (see Coevolutionary models) contains the same information

as matrix B, but has all species in the rows and in the columns.

Using matrix B, we calculated four metrics: (i) species richness, (ii) connectance, (iii) nestedness, and

(iv) modularity. Species richness was calculated as N = N1 +N2. Connectance represents the proportion of

all possible interactions that are in fact realized (21). We calculated connectance using the following formula:

C =
L

N1N2
[S25]

in which L =
PN1

i=1

PN2

j=1 bij is the total number of interactions in the network. Nestedness measures how

much the interactions of species with low degree values are proper subsets of the interactions of species from

the same set that have higher degree values (22). We quantified nestedness using a metric based on overlap

and decreasing fill (NODF ), which varies from 0 (no nestedness) to 100 (perfect nestedness) (23, 24). NODF

was computed using the following equation:

NODF =

PN1

i<j Mij +
PN2

i<j Mij

[N1(N1�1)
2 ] + [N2(N2�1)

2 ]
[S26]

in which the sum on the left is over all pairs of species in the first set and the sum on the right is over all

pairs of species in the second set. For each pair of species i and j, Mij is defined in the following way:

Mij =

(
nij

min(ki,kj)
, if ki 6= kj

0, if ki = kj

[S27]
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in which nij is the number of common interactions between i and j and ki is the number of interactions (or

degree) of species i.

Finally, modularity measures how much the network is partitioned in groups of species (i.e., modules) with

many interactions within groups and few interactions among di↵erent groups (25). We quantified modularity

using a bipartite version of the metric Q, which varies from 0 (no modularity) to 1 (perfect modularity)

(26, 24). The bipartite version of Q has the following equation:

Q =
nX

i=1

✓
ei

L
� d

N1
i

L

d
N2
i

L

◆
[S28]

where n is the number of modules, ei is the total number of interactions within module i, and d
N1
i (dN2

i ) is the

sum of the degrees of species from the first (or second) set within module i. Each partition of a network in

modules renders a di↵erent value of Q. Thus, we used an optimization algorithm based on simulated annealing

that numerically maximizes Q and finds the partition that best reflects the organization of the network in

modules (27). Modularity was calculated using the program MODULAR (27) and the other metrics were

calculated in R 3.3.2 (12). All codes are available at www.github.com/wgar84/spatial_coevo_mutnet.

3.2 Principal Component Analysis

Because network structural metrics are often highly correlated among each other (21, 22, 28), we used

Principal Component Analysis (PCA) to describe how the values of our four metrics covary across networks

(29, 1). We used the correlation matrix among our four metrics in the PCA because of large di↵erences in the

scale of our metrics (Table S1). By using PCA, we were able to obtain two axes of structural variation—the

first two principal components (PC1 and PC2)—that describe the variation in network structure of our

dataset. We decided to use only those two principal components because together they explain over 93% of

the variation in our dataset (percentage of variance explained by each PC: PC1 = 60.94%, PC2 = 32.43%,

PC3 = 4.76%, and PC4 = 1.86%). In the main text, we reported only the strongest correlations of PC1 and

PC2 with our network metrics. Here, we report all the correlations between PC1 and PC2 and our network

structure metrics (Table S3). The relationship between trait matching and PC1 and PC2 (Fig. 3) allows

us to conclude that networks with few species, low connectance, low nestedness, and high modularity favor

higher values of trait matching. However, when gene flow connects two mutualistic assemblages, the e↵ect of

network structure on the emergence of trait matching is much weaker (Fig. 3).

4 Disruption of gene flow and its consequences for coevolution

We used our analytical equilibrium expression and additional empirical data on mutualistic interactions

to understand the consequences of the disruption of gene flow to the evolution of trait patterns. Here, we

explain in detail how we performed this analysis and present additional results. For this analysis, we used a

sample of our complete dataset of mutualistic networks for which we had data on the interaction weights (n

= 29 networks, Table S1). These interaction weights represent the frequency with which two species interact

at a given location and, therefore, are a proxy for how much one partner depends on the other for its survival

or reproduction (24). In this sense, this information may be used to parameterize the evolutionary e↵ect

of species j on species i in our coevolutionary model (qij). We are aware that ecological e↵ects are not

equivalent to evolutionary e↵ects, but we decided to use this approach as a first approximation that allows
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inferences from empirical data. By using empirical information, we avoided using our simulation results (i.e.,

equilibrium trait values) to parameterize qij , as we did in Matrix T and the emergence of trait matching. For

each of the 29 quantitative empirical networks, we simulated the progressive loss of gene flow using di↵erent

scenarios of mutualistic selection (mi,A and mi,B) and gene flow (gi).

We started our simulations by building the matrices that are needed to obtain equilibrium trait values via

our analytical expression (eq. [S24]), that is, G,  , and Q. Matrix G was initially built using a high value

of gene flow, which was either gi = 0.1 8 i or gi = 0.3 8 i. Matrix  was built using a given value for mi,A

and mi,B . All species from a given site had the same value of mi,A or mi,B . We performed simulations using

15 di↵erent combinations of mi,A and mi,B (Table S2). Matrix Q was built using the mi,A and mi,B values

as well as the empirical information on interaction weights contained in our quantitative empirical networks.

After building those matrices, our simulations had three additional steps. First, we computed equilibrium

trait values (z⇤) using equation [S24] for 10 di↵erent samples of ✓ with ✓i,A ⇠ U [0, 10] and ✓i,B ⇠ U [10, 20].
Second, we quantified the mean equilibrium trait matching (⌧⇤) within each site using equation [S10] for

each of our 10 samples of ✓. Third, we perturbed G by randomly choosing 5% of the species in the network

and changing their gene flow value from high to low, which was either gi = 0.05, gi = 0.01, or gi = 0. By

doing so, we altered the direct and indirect coevolutionary e↵ects present in the matrix T = (G�1�Q)�1 .

After perturbing the matrix G, we repeated these three steps until all species in the network had a low value

of gene flow, which was the end of the simulation. For each network and each parameter choice (i.e., each

combination of mi,A, mi,B , high gi, and low gi; n = 105 combinations), we performed 10 simulations in order

to vary the sequence of species that lost gene flow (n = 29 networks, total = 30,450 simulations). All codes

are available at www.github.com/wgar84/spatial_coevo_mutnet.

Our results for high gi = 0.3 and low gi = 0 show that disruption of gene flow causes trait matching to

initially decrease in mutualistic networks (Fig. S12). However, we found that extreme loss of gene flow may

cause trait matching to increase (Fig. S12). For some specific combinations of mutualistic selection, such as

a hotspot and a coldspot (mi,A = 0.9, mi,B = 0.1), trait matching values in the absence of gene flow (gi = 0)

are higher than initial trait matching values (gi = 0.3). Thus, our results suggest that the e↵ect of gene flow

on trait matching depends not only on the levels of mutualistic selection, but also on the fraction of species

with a high value of gene flow.

We also found that, for mi,A = 0.5 and mi,B = 0.5, the choice of the high and low values of gene flow

do not qualitatively a↵ect our conclusion that losing gene flow causes trait matching to decrease (Fig. S13).

These di↵erent parameterizations for high and low gene flow also allowed us to explore how the variation in

gene flow across species in the network a↵ects the emergence of trait matching. To do so, we calculated the

standard deviation of gi values throughout the simulations. Our results show that a larger variation of gene

flow values leads to a stronger decrease in trait matching as gene flow is lost (Fig. S13). Furthermore, our

results suggest that the slight increase in trait matching in the end of the simulations is associated with a

decrease in the variation of gene flow values (Fig. S13). Therefore, variation in dispersal ability and gene

flow across species should play an important role in trait evolution in mutualistic assemblages.
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Figure S1: Higher values of mean mutualistic selection (m) lead to (A) stronger reciprocal selection and to
(B) higher trait matching values. Each line represents the value of (A) mean reciprocity of selection (log(r(t)))
or (B) mean trait matching (⌧ (t)) through time for one simulation of the single-site coevolutionary model
parameterized by one empirical network (network 64 in Table S1). Each panel shows simulations for the
indicated value of mean mutualistic selection (m). Results are shown for the first 30 timesteps to facilitate
visualization, although some simulations lasted much longer. Sample distributions and values for simulation
parameters: 'i ⇠ N [µ = 0.5,�2 = 10�4], ✓i ⇠ U [a = 0, b = 10], mi ⇠ N [m, 10�4], and ↵ = 0.2.
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Figure S2: Gene flow favors local trait matching for the majority of combinations of mutualistic selection
(mA and mB). Each panel shows the mean trait matching at equilibrium (⌧⇤) for di↵erent values of gene flow
(g) for the indicated combination of mutualistic selection (mA: rows, mB : columns). (A and B) Each point
is the mean of 100 simulations for a given empirical mutualistic network (total = 72 networks). Di↵erent
colors represent distinct mutualisms. (A) Trait matching at site A. (B) Trait matching at site B. Sample
distributions and values for simulation parameters: 'i,A,'i,B ⇠ N [µ = 0.5,�2 = 10�4], ✓i,A ⇠ U [0, 10],
✓i,B ⇠ U [10, 20], mi,A ⇠ N [mA, 10�4], mi,B ⇠ N [mB , 10�4], gi ⇠ N [g, 10�6], and ↵ = 0.2.
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Figure S3: Gene flow fuels trait matching especially in pairs of generalist species (i.e., species with many
interactions). (A and B) Each panel shows the mean di↵erence in pairwise trait matching for simulations with
and without gene flow (⌧⇤ij,g=0.3� ⌧

⇤
ij,g=0) parameterized with empirical networks of the indicated mutualism

type (n = 72 networks). Each point indicates the degree values (ki) of two interacting species (x and y axes)
and the mean di↵erence in pairwise trait matching with and without gene flow for 100 simulations (warmer
colors depict higher di↵erences in absolute value). Species with degrees larger than 40 were removed to
facilitate visualization. (A) Trait matching calculated for a hotspot (site A) connected to another hotspot
(mA = mB = 0.7). (B) Trait matching calculated for a hotspot (site A) connected to a coldspot (mA = 0.9,
mB = 0.1). Simulation parameters as in Fig. S2.
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Figure S4: Gene flow promotes the uncoupling of species traits from their local environmental optima and
the geographical homogenization of species traits. Panels contain the equilibrium values of (A) the mean
environmental matching at site A ("⇤A) or (B) the mean geographical divergence (�⇤) for di↵erent values of
gene flow (g) and for the indicated combination of mutualistic selection (mA and mB). Each point represents
the mean of 100 simulations for a given empirical mutualistic network (total = 72 networks). Di↵erent colors
represent distinct mutualisms. Simulation parameters as in Fig. S2.
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Figure S5: Gene flow enhances trait matching in a hotspot connected to another hotspot (mA = mB = 0.7),
but reduces trait matching in a hotspot connected to a coldspot (mA = 0.9, mB = 0.1) for several di↵erent
parameterizations of the two-site coevolutionary model. However, gene flow does not favor trait matching
when environmental optima (✓i,A, ✓i,B) are correlated across sites (D). Each panel shows the mean trait
matching at site A at equilibrium (⌧⇤A) for di↵erent values of gene flow (g) and for the indicated combination of
mutualistic selection (mA and mB) and parameterization (see Simulations with di↵erent parameterizations).
Each point represents the mean of 50 simulations for a given empirical mutualistic network (total = 36
networks). Di↵erent colors represent distinct mutualisms. (A-D) Di↵erent parameterizations of ✓i,A and
✓i,B , which are the trait values selected by the local environment. (E and F) Di↵erent parameterizations of
'i,A and 'i,B , which are related to the additive genetic variance of the trait and to the slope of the selection
gradient. (G and H) Di↵erent parameterizations of ↵, which measures the sensitivity of trait matching to
di↵erences between traits of mutualistic partners. Simulation parameters as in Fig. S2, except were noted.
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Figure S6: Gene flow enhances trait matching in a hotspot connected to another hotspot (mA = mB = 0.7),
but reduces trait matching in a hotspot connected to a coldspot (mA = 0.9, mB = 0.1) in simulations of the
coevolutionary model in which gene flow (gi) is positively correlated with species degree (ki) (see Simulations
with gene flow correlated with species degree). (A) Trait matching at site A. (B) Trait matching at site B.
(A and B) Each point represents the mean of 50 simulations for a given empirical mutualistic network (total
= 36 networks). Di↵erent colors represent distinct mutualisms. Simulation parameters as in Fig. S2, except
for gene flow, which had a larger variance (gi ⇠ N [g, 10�4]).
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Figure S7: Gene flow enhances trait matching in a hotspot connected to another hotspot (mA = mB = 0.7),
but reduces trait matching in a hotspot connected to a coldspot (mA = 0.9, mB = 0.1) in simulations of the
coevolutionary model with spatial species turnover. Before simulating the coevolutionary dynamics, species
were randomly removed from each local mutualistic network with a probability based on species degree (see
Simulations with spatial species turnover). (A) Trait matching at site A. (B) Trait matching at site B. (A
and B) Each point represents the mean of 50 simulations for a given empirical mutualistic network (total =
36 networks). Di↵erent colors represent distinct mutualisms. Simulation parameters as in Fig. S2.
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Figure S8: Higher values of mutualistic selection (mi) lead to greater similarity of adaptive landscapes (i.e.,
greater correlation among rows of matrix T). Each panel shows an example of a matrix T for a seed dispersal
network (network 72 in Table S1) for the indicated value of mutualistic selection (colors depict the magnitude
of matrix elements). Each matrix was built using the analytical expression for the single-site coevolutionary
model: T = (I � Q)�1 . Each matrix  was built using mi = 0.1 8 i (left) or mi = 0.9 8 i (right).
Each matrix Q was built using equilibrium trait values (z⇤i ) and mi values from one simulation. Sample
distributions and values for simulation parameters: 'i ⇠ N [µ = 0.5,�2 = 10�4], ✓i ⇠ U [a = 0, b = 10],
↵ = 0.2, and mi ⇠ N [m, 10�4], where m = 0.1 (left) or m = 0.9 (right).
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Figure S9: Greater similarity of adaptive landscapes (i.e., greater correlation among rows of matrix T) lead
to higher values of trait matching. Each panel shows the mean trait matching at equilibrium (⌧⇤) as a
function of the mean correlation among mutualistic adaptive landscapes for di↵erent values of mutualistic
selection (mi, warmer colors depict higher mi values) and for the indicated mutualism type. Trait matching
and correlation among adaptive landscapes were calculated using our analytical equilibrium expression (eq.
[S19]) and simulation results for the single-site coevolutionary model (see Matrix T and the emergence of
trait matching). Each point corresponds to the mean value of 100 simulations and lines connect points from
the same empirical mutualistic network (n = 72 networks). Simulation parameters as in Fig. S1.
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Figure S10: Higher values of gene flow (gi) lead to greater similarity of adaptive landscapes (i.e., greater
correlation among rows of matrix T). Each panel shows an example of a matrix T for a seed dispersal
network (network 72 in Table S1) for the indicated value of gene flow (colors depict the magnitude of matrix
elements). Each matrix was built using the analytical expression for the two-site coevolutionary model:
T = (G�1 �Q)�1 . Each matrix  was built using mi,A = mi,B = 0.7 8 i. Each matrix G was built using
gi = 0 8 i (left), gi = 0.05 8 i (middle), or gi = 0.3 8 i (right). Each matrix Q was built using equilibrium trait
values (z⇤i,A and z

⇤
i,B), mi,A values, and mi,B values from one simulation. Sample distributions and values

for simulation parameters: 'i,A,'i,B ⇠ N [µ = 0.5,�2 = 10�4], ✓i,A ⇠ U [0, 10], ✓i,B ⇠ U [10, 20], ↵ = 0.2,
mi,A ⇠ N [0.7, 10�4], mi,B ⇠ N [0.7, 10�4], and gi ⇠ N [g, 10�6], where g = 0 (left), g = 0.05 (middle), or
g = 0.3 (right).
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Figure S11: Greater similarity of adaptive landscapes (i.e., greater correlation among rows of matrix T)
lead to higher values of trait matching. Each panel shows the mean trait matching at equilibrium at site
A (⌧⇤A) as a function of the mean correlation among mutualistic adaptive landscapes for di↵erent values of
gene flow (gi, warmer colors depict higher gi values) and for the indicated mutualism type. Trait matching
and correlation among adaptive landscapes were calculated using our analytical equilibrium expression (eq.
[S24]) and simulation results for the two-site coevolutionary model (see Matrix T and the emergence of trait
matching). Each point corresponds to the mean value of 100 simulations and lines connect points from the
same empirical mutualistic network (n = 72 networks). (A) Results for two hotspots (mi,A = mi,B = 0.7).
(B) Results for a hotspot and a coldspot (mi,A = 0.9, mi,B = 0.1). Simulation parameters as in Fig. S2.
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Figure S12: The ongoing disruption of gene flow causes trait matching to decrease in mutualistic networks,
but extreme loss of gene flow may lead to a small increase in trait matching. Each panel shows the mean
trait matching at equilibrium (⌧⇤) as gene flow is progressively lost in simulations with the indicated values
of mutualistic selection (mi,A: rows, mi,B : columns). In these simulations, all species in the network start
with a high value of gene flow (gi = 0.3 8 i) and species randomly lose gene flow until all species lack gene
flow (gi = 0 8 i). Trait matching was calculated using our analytical equilibrium expression (eq. [S24]) and
empirical data on ecological dependencies for 29 networks in our dataset (Table S1). (A and B) Each point
is the mean trait matching for 10 di↵erent ✓ samples in each of 10 distinct simulations. Lines connect points
from the same network and di↵erent colors indicate di↵erent types of mutualism. (A) Trait matching at site
A. (B) Trait matching at site B. Sample distributions and values for simulation parameters: 'i,A = 'i,B = 1,
✓i,A ⇠ U [0, 10], ✓i,B ⇠ U [10, 20], ↵ = 0.2.
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Figure S13: Trait matching in mutualistic networks is a↵ected by the progressive loss of gene flow and the
lowest values of trait matching occur when gene flow is highly variable across species in the network. Each
panel shows the mean trait matching at equilibrium at site A (⌧⇤A) as gene flow is progressively lost in
simulations with the indicated parameterization for the high (initial) and low (final) values of gene flow.
In these simulations, all species in the network start with a high value of gene flow and species randomly
lose gene flow until all species have a low value of gene flow. Trait matching was calculated using our
analytical equilibrium expression (eq. [S24]) and empirical data on ecological dependencies for 29 networks
in our dataset (Table S1). Each point is the mean trait matching for 10 di↵erent ✓ samples in each of 10
distinct simulations and lines connect points from the same network. Warmer colors indicate higher standard
deviation in gene flow values across species in the network. Sample distributions and values for simulation
parameters: 'i,A = 'i,B = 1, ✓i,A ⇠ U [0, 10], ✓i,B ⇠ U [10, 20], mi,A = mi,B = 0.5, and ↵ = 0.2.
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Table S1: Empirical mutualistic networks used in this study. Mutualism: AA, anemones–anemonefishes;
AM, ants–myrmecophytes; AN, ants–nectary-bearing plants; MC, marine cleaning; P, pollination; SD, seed
dispersal. Each mutualism is identified by two sets of species that interact. N1: number of species in the
first set (e.g., plant species in the plant-animal mutualisms). N2: number of species in the second set. N :
total species richness (N = N1 + N2). C: connectance. NODF : nestedness. Q: modularity. PC1: first
principal component of a PCA with network metrics. PC2: second principal component. Availability: IWDB,
dataset available for download at www.nceas.ucsb.edu/interactionweb; Web of Life, dataset available for
download at www.web-of-life.es; Rico-Gray, dataset kindly provided by Victor Rico-Gray; Izzo, dataset
kindly provided by Thiago Izzo; Sazima, dataset kindly provided by Cristina and Ivan Sazima; Donatti,
dataset kindly provided by Camila Donatti. *Network contains quantitative information on the ecological
dependencies between species pairs. †Network used in sensitivity analyses.

Network Mutualism N1 N2 N C NODF Q PC1 PC2 Availability
1† AA 6 5 11 0.33 38.00 0.44 0.78 -0.94 IWDB, (30)
2† AA 4 5 9 0.40 34.38 0.44 0.96 -1.19 IWDB, (30)
3 AA 3 4 7 0.50 22.22 0.33 1.41 -1.39 IWDB, (30)
4† AA 4 4 8 0.44 37.50 0.37 1.47 -1.09 IWDB, (30)
5 AA 5 3 8 0.47 38.46 0.41 1.46 -1.26 IWDB, (30)
6† AA 4 4 8 0.44 62.50 0.39 2.11 -0.81 IWDB, (30)
7† AA 4 5 9 0.30 12.50 0.56 -0.50 -1.52 IWDB, (30)
8 AA 4 4 8 0.44 29.17 0.39 1.15 -1.25 IWDB, (30)
9 AA 4 4 8 0.38 16.67 0.47 0.23 -1.47 IWDB, (30)
10† AA 5 5 10 0.32 22.50 0.48 0.12 -1.24 IWDB, (30)
11 AA 4 5 9 0.35 12.50 0.47 0.02 -1.43 IWDB, (30)
12* AM 8 16 24 0.15 4.28 0.78 -2.23 -1.50 Web of Life, (31)
13* AM 15 24 39 0.12 12.80 0.67 -1.78 -0.76 Web of Life, (32)
14 AM 5 6 11 0.23 8.00 0.69 -1.41 -1.72 Izzo, (33)
15† AM 7 9 16 0.17 7.02 0.78 -2.00 -1.69 Izzo, (33)
16† AM 8 13 21 0.16 11.32 0.69 -1.61 -1.27 Izzo, (33)
17† AM 7 8 15 0.16 0.00 0.79 -2.30 -1.80 Izzo, (33)
18† AM 9 12 21 0.15 4.90 0.78 -2.21 -1.56 Izzo, (33)
19 AM 8 10 18 0.15 4.11 0.78 -2.20 -1.63 Izzo, (33)
20* AN 48 41 89 0.14 44.82 0.30 0.28 1.56 Web of Life, (34)
21† AN 38 10 48 0.25 39.17 0.37 0.54 0.23 Rico-Gray, (35)
22† AN 99 28 127 0.10 40.59 0.47 -0.80 1.98 Rico-Gray, (35)
23 AN 12 5 17 0.22 2.63 0.75 -1.85 -1.76 Rico-Gray, (35)
24† AN 46 13 59 0.21 35.55 0.46 -0.11 0.28 Rico-Gray, (35)
25 MC 32 4 36 0.41 46.30 0.36 1.50 -0.33 (36)
26† MC 35 5 40 0.42 70.73 0.26 2.56 0.33 Sazima, (37)
27† MC 50 6 56 0.35 64.47 0.30 1.87 0.63 (38)
28† P 84 101 185 0.04 14.46 0.52 -2.31 2.82 Web of Life, (39)
29 P 43 64 107 0.07 15.36 0.53 -1.78 1.15 Web of Life, (39)
30 P 36 25 61 0.09 19.19 0.59 -1.57 0.06 Web of Life, (39)
31*† P 12 102 114 0.14 30.78 0.49 -0.95 1.44 Web of Life, (40)
32* P 13 13 26 0.42 84.93 0.23 3.16 0.30 Web of Life, (41)
33* P 17 61 78 0.14 52.27 0.40 0.20 1.21 Web of Life, (42)
34*† P 16 36 52 0.15 35.66 0.43 -0.23 0.36 Web of Life, (42)
35 P 11 38 49 0.25 35.97 0.36 0.49 0.22 Web of Life, (43)
36† P 24 118 142 0.09 15.39 0.50 -1.81 1.89 Web of Life, (44)
37† P 29 81 110 0.08 25.68 0.48 -1.29 1.47 Web of Life, (45)
38* P 40 85 125 0.08 19.31 0.43 -1.37 1.81 Web of Life, (46)
39*† P 58 100 158 0.09 34.35 0.30 -0.59 2.96 IWDB, (47)
40 P 21 45 66 0.09 18.02 0.62 -1.74 0.08 Web of Life, (48)
41† P 23 72 95 0.08 22.88 0.58 -1.64 0.88 Web of Life, (48)
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Network Mutualism N1 N2 N C NODF Q PC1 PC2 Availability
42* P 11 18 29 0.19 32.07 0.48 -0.20 -0.39 Web of Life, (49)
43* P 14 13 27 0.29 51.87 0.34 1.26 -0.06 IWDB, (50)
44* P 10 12 22 0.25 35.96 0.44 0.31 -0.54 IWDB, (50)
45*† P 9 56 65 0.20 35.49 0.43 -0.08 0.47 Web of Life, (51)
46 P 18 60 78 0.11 13.94 0.56 -1.61 0.37 Web of Life, (52)
47† P 28 53 81 0.07 11.16 0.58 -1.94 0.43 Web of Life, (53)
48† P 51 25 76 0.15 46.36 0.32 0.34 1.26 IWDB, (54)
49 P 7 33 40 0.28 56.66 0.36 1.25 0.24 Web of Life, (55)
50* P 13 34 47 0.32 40.96 0.26 1.27 0.33 Web of Life, (56)
51*† P 10 29 39 0.15 29.54 0.54 -0.72 -0.26 IWDB, (57)
52*† P 9 33 42 0.15 18.66 0.62 -1.33 -0.55 IWDB, (57)
53* P 10 29 39 0.14 26.31 0.58 -0.96 -0.39 IWDB, (57)
54*† P 8 26 34 0.17 23.28 0.54 -0.77 -0.50 IWDB, (57)
55* P 8 27 35 0.22 30.31 0.50 -0.24 -0.40 IWDB, (57)
56*† SD 7 21 28 0.34 50.98 0.32 1.51 -0.15 Web of Life, (58)
57*† SD 31 9 40 0.43 67.66 0.22 2.64 0.35 Web of Life, (59)
58*† SD 25 16 41 0.17 44.70 0.40 0.31 0.28 Web of Life, (60)
59* SD 34 20 54 0.14 43.38 0.40 0.07 0.60 Web of Life, (60)
60* SD 25 13 38 0.15 29.69 0.54 -0.69 -0.28 Web of Life, (60)
61*† SD 21 15 36 0.16 34.17 0.47 -0.26 -0.11 Web of Life, (60)
62 SD 72 7 79 0.28 51.67 0.33 0.99 1.02 Web of Life, (61)
63 SD 45 46 91 0.13 27.80 0.41 -0.67 1.13 Donatti, (62)
64*† SD 35 29 64 0.14 35.49 0.38 -0.13 0.74 Web of Life, (63)
65† SD 16 17 33 0.44 78.76 0.24 3.02 0.28 Web of Life, (64)
66 SD 5 27 32 0.64 67.34 0.18 3.67 -0.25 Web of Life, (65)
67 SD 24 61 85 0.34 58.84 0.20 1.87 1.41 Web of Life, (66)
68† SD 29 32 61 0.07 11.21 0.65 -2.07 -0.13 Web of Life, (67)
69* SD 4 19 23 0.43 48.29 0.35 1.73 -0.60 Web of Life, (68)
70* SD 13 11 24 0.37 73.90 0.25 2.56 0.17 Web of Life, (68)
71* SD 33 88 121 0.14 34.58 0.31 -0.20 2.06 Web of Life, (69)
72† SD 7 6 13 0.52 66.67 0.26 3.02 -0.55 Web of Life, (70)
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Table S2: List of parameters and variables used in the numerical simulations of the two-site coevolutionary
model. Parameter/variable: mathematical notation for each parameter/variable (site S is either A or B).
Definition: verbal definition of parameters/variables. Sampling distribution: statistical distribution used
to sample parameters/variables for each species. Values for simulations: values used to sample parame-
ters/variables or the values attributed to parameters/variables in simulations (values in bold indicate the
main set of simulations reported in the main text).
Parameter/
variable

Definition Sampling distribution Values for simulations

mi,S

Level of mutualistic se-
lection of species i at
site S

N [µ = mS ,�
2 = 0.0001];

0  mi,S  1

(mA,mB) = (0.1, 0.1); (0.3, 0.1);
(0.5, 0.1); (0.7, 0.1); (0.9, 0.1); (0.3,
0.3); (0.5, 0.3); (0.7, 0.3); (0.9, 0.3);
(0.5, 0.5); (0.7, 0.5); (0.9, 0.5); (0.7,
0.7); (0.9, 0.7); (0.9, 0.9)

gi
Level of gene flow of
species i across sites

N [µ = g,�
2 = 0.000001 or

0.0001]; 0  gi  1
g = 0; 0.01; 0.02; ...; 0.29; 0.3

✓i,S

Trait value of species
i selected by the envi-
ronment at site S

U [✓S,min, ✓S,max]; ✓i,S > 0

([✓A,min, ✓A,max], [✓B,min, ✓B,max]) =
([0, 10], [0, 10]); ([0, 10], [5, 15]); ([0,
10], [10, 20]); ([0, 10], [20, 30]); ([0,
10], ✓i,A +N (µ = 10,�2 = 1))

'i,S

Additive genetic vari-
ance of trait zi,S mul-
tiplied by the slope of
the selection gradient
('i,S = �

2
Gzi,S

⇢i,S)

N [µ = 'S ,�
2 = 0.0001];

'i,S > 0
'S = 0.1;0.5; 1

↵

Sensitivity of trait
matching to di↵er-
ences between traits

-
↵ = 0.05;0.2; 0.8 (same value for all
species; ↵ > 0)

NS

Number of species in
the mutualistic assem-
blage at site S

-
Parameterized with empirical net-
works (see Table S1)

A (aij)

Adjacency matrix de-
scribing if species i and
j interact (aij = 1) or
not (aij = 0) in a mu-
tualistic assemblage

-
Parameterized with empirical net-
works (see Table S1)

z
(t)
i,S

Mean trait value of the
population of species i

at site S

Sampled at t = 0 from

U [✓S,min, ✓S,max]; z
(t)
i,S > 0

Values change over time according to
equation [S7]

⌧
(t)
ij,S

Trait matching be-
tween species i and j

at site S

-
Values change over time according to

z
(t)
i,S and z

(t)
j,S (eq. [S5]; 0  ⌧

(t)
ij,S  1)

q
(t)
ij,S

Evolutionary e↵ect of
species j on species i at
site S

-

Values change over time according

to ⌧
(t)
ij,S (eq. [S6]; 0  q

(t)
ij,S  1;

PNS

j=1 q
(t)
ij,S = mi,S)
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Table S3: Correlations between the first principal components (PC1 and PC2) and our four metrics of
network structure.

PC1 PC2
richness (N) -0.22 0.81

connectance (C) 0.56 -0.35
nestedness (NODF ) 0.58 0.27

modularity (Q) -0.56 -0.39
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