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Abstract

Understanding how communities respond to perturbations requires us to

consider not only changes in the abundance of individual species but also

correlated changes that can emerge through interspecific effects. However, our

knowledge of this phenomenon is mostly constrained to situations where

interspecific effects are fixed. Here, we introduce a framework to disentangle

the impact of species correlated responses on community sensitivity to pertur-

bations when interspecific effects change over time due to cyclic or chaotic

population dynamics. We partition the volume expansion rate of perturbed

abundances (community sensitivity) into contributions of individual species

and of species correlated responses by converting the time-varying Jacobian

matrix containing interspecific effects into a time-varying covariance matrix.

Using population dynamics models, we demonstrate that species correlated

responses change considerably across time and continuously alternate between

reducing and having no impact on community sensitivity. Importantly, these

alternating impacts depend on the abundance of particular species and can be

detected even from noisy time series. We showcase our framework using two

experimental predator–prey time series and find that the impact of species cor-

related responses is modulated by prey abundance—as theoretically expected.

Our results provide new insights into how and when species interactions can

dampen community sensitivity when abundances fluctuate over time.
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INTRODUCTION

Natural and human-driven perturbations such as fires
(Cochrane, 2003), storms (Turner et al., 1997), pollution
(Carpenter et al., 1998), and overfishing (Jackson et al.,

2001) can alter the composition of ecological communi-
ties and the abundance of their constituent species. Thus,
there is an urgent need to understand the capacity of
communities to retain their biodiversity and functioning
in the face of rapidly increasing perturbations (Cardinale
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et al., 2012; Levin & Lubchenco, 2008). It is well known
that the way communities respond to perturbations
(e.g., recovery, constancy, sensitivity) cannot be explained
solely by the sum of responses of isolated species but
depends crucially on the interactions among these species
(Kéfi et al., 2019; Pennekamp et al., 2018; Pimm, 1984;
Tilman et al., 2006). Indeed, because not all species are
equal and species may affect each other’s responses, scal-
ing up from individual species through their interactions
to understand the response of an entire community to
perturbations remains an important challenge.

A fundamental consequence of species interactions is
that changes in the abundance of a given species follow-
ing a perturbation may cascade and shift the abundance
of other species, creating correlations in how species
respond to perturbations. Such correlated responses
include, for example, shifts in prey (or resources) imme-
diately following changes in the abundance of predators
(or consumers) (Dulvy et al., 2000; Estes et al., 1998;
Pringle et al., 2007) and shifts in competitors immediately
following changes in environmental conditions (Brown
et al., 2016; Fischer et al., 2001; Tilman et al., 2006).
Importantly, such correlations can impact the response
of aggregate community properties following perturba-
tions. For instance, when measuring community
response as the constancy of total abundance over time,
opposite changes in the abundance of different species
(i.e., negative correlations) will increase community
constancy—a phenomenon known as compensatory
dynamics (Brown et al., 2016; Fischer et al., 2001;
Gonzalez & Loreau, 2009; Tilman et al., 2006). Given that
many ecosystem services depend on total abundance,
compensatory dynamics has been invoked as a central
mechanism stabilizing the provision of these services
(Cardinale et al., 2012; Gonzalez & Loreau, 2009).

Despite important progress in assessing how species
correlated responses affect whole-community response to
perturbations, the fact that this effect appears to be
context-dependent has posed significant challenges to its
understanding. Key examples come from food web studies,
where the effect of removing or adding a predator on other
species in the community critically depends on the sign
and strength of species interactions (Samhouri et al., 2017;
Schneider et al., 2012; Worsfold et al., 2009). Thus,
depending on species’ initial abundances and their interac-
tions, two species may show a positive, negative, or null
correlation in their response to a perturbation. Such con-
text dependency becomes clearer when we consider that in
many natural communities, the local effect of each species
on the growth rate of other species in the community
(hereafter interspecific effects) shifts over time due to
changes in community state (i.e., distribution of species
abundances) (Deyle et al., 2016; Ushio et al., 2018). That is,

even when the sign and strength of the per-capita effect of
a species on the per-capita growth rate of another species is
fixed (e.g., fixed interaction parameters in a population
dynamics model), interspecific effects (i.e., elements of the
Jacobian matrix of a model) will change when species
abundances change (Medeiros et al., 2021; Song &
Saavedra, 2021). The fact that interspecific effects are
state-dependent is particularly important when populations
do not settle down to a fixed point (e.g., transient, cyclic, or
chaotic dynamics), which is the case for many communi-
ties (Becks et al., 2005; Begon et al., 1996; Blasius et al.,
2020; Deyle et al., 2016; Hastings et al., 2018; Ushio et al.,
2018). What is currently unknown is how such interspecific
effects shape species correlated responses to perturbations
and, in turn, how such correlations impact whole-
community response when populations exhibit determinis-
tic fluctuations over time around an attractor (e.g., limit
cycles, chaos) or when they undergo transient dynamics
before they reach an equilibrium.

Moving beyond the typical assumption of
populations at a fixed point, recent work has begun to
elucidate how communities respond to perturbations
when populations fluctuate over time. For example, it
has been shown that, not only interspecific effects but
also a community’s response to perturbations change
over time when dynamics are in equilibrium but
undergo a cyclic or chaotic behavior (Cenci & Saavedra,
2019; Rogers et al., 2023; Ushio et al., 2018). In particu-
lar, such a community may have a time-varying sensi-
tivity to changes in environmental conditions (Cenci
et al., 2020; Cenci & Saavedra, 2019). In addition to
whole-community response, the sensitivity of individ-
ual species to perturbations has also been shown to
change over time, implying that the identity of the most
sensitive species also depends on community state
(Medeiros et al., 2023). In spite of this recent progress,
current frameworks to quantify response to perturba-
tions at the community (Cenci & Saavedra, 2019) and
species levels (Medeiros et al., 2023) have remained dis-
connected. However, investigating potential
time-varying correlations in how species respond to
perturbations may provide the key to understanding
the links between responses to perturbations at these
two levels of biological organization.

Here we introduce a theoretical framework to assess
the time-varying impact of species correlated responses
(hereafter species correlations) on the sensitivity of a
community to perturbations. In what follows, we first
present our framework, which consists of partitioning
community sensitivity—measured as the volume
expansion rate of perturbed abundances—into contri-
butions of individual species and of species correlations
by converting the time-varying Jacobian matrix into a
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time-varying covariance matrix. Then we illustrate our
framework using synthetic time series generated from
population dynamics models and show how we can
identify community states where species correlations
have either a weak or strong impact on community sen-
sitivity. Our conceptual framework is general to any
type of deterministic dynamics (e.g., fixed points, tran-
sient dynamics, limit cycles, chaotic dynamics).
However, in practice, we focus on cases where a com-
munity has had enough time to approach an attractor
because the statistical approach we use to infer the
time-varying Jacobian matrix requires population
dynamics around an attractor (Materials and methods).
Lastly, we apply our framework to two experimental
predator–prey communities and find that prey abun-
dance is an important factor determining whether or
not species correlations can dampen community sensi-
tivity to perturbations over time.

RESULTS

Species correlations and their impact on
community sensitivity

In general, the population dynamics of a community with
S species can be written dN

dt ¼ f Nð Þ, where
N¼ N1,…,NS½ � > is the vector of species abundances and
f ¼ f 1,…, f Sð Þ (f i: ℝ

S !ℝ) is a set of generic functions
describing abundance growth rates (Case, 2000). As an
example, consider a model of a community with one
predator and one prey (Materials and methods;
Equation 2). Under certain parameter values, this model
generates a limit cycle, which we use to illustrate the
state-dependent impact of species correlations on
whole-community sensitivity to perturbations (Figure 1).
At any given state (i.e., any N along the cycle), this com-
munity may be affected by a pulse perturbation
p¼ p1,…,pS½ � > that changes N into eN (i.e., eN¼N+p)
(Bender et al., 1984). The vector eN would then change in
time according to f . For instance, consider a perturbation
that decreases the abundance of the predator
(p¼ − 7,0½ � > , red arrow in Figure 1a,b) and an opposite
perturbation with the same magnitude (p¼ 7,0½ � > , blue
arrow in Figure 1a,b). Figure 1a shows the impact of
these two perturbations on the prey abundance (ΔN2) at
time t1 and after k time steps. The figure shows that,
although one perturbation decreased the predator abun-
dance and the other increased it, the impacts on the prey
abundance (red ΔN2 vs. blue ΔN2 in Figure 1a) are simi-
lar to each other. Thus, knowing how the perturbation
affects the predator conveys little information about the
amount of change in the prey (i.e., species responses to

perturbations are uncorrelated). Interestingly, however,
the same perturbations applied at time t2 can trigger a
completely different outcome (Figure 1b). Figure 1b
shows that the impact on prey abundance is much
greater when the predator abundance is decreased (red
ΔN2 in Figure 1b) than when it is increased (blue ΔN2 in
Figure 1b). In this case, knowing how the perturbation
impacts the predator gives information about how much
change we are likely to see in the prey (i.e., species
responses to perturbations are correlated).

Although the previous example is based on only two
perturbations (decreasing or increasing the predator
abundance), we can observe the same outcomes when
considering several random perturbations p around N
(Figure 1c,d). Note that here we focus on random pertur-
bations as we typically have no a priori information
about how much an external perturbation will affect each
species in a community. Each light purple point in
Figure 1c,d represents a vector of perturbed abundances
(eN; total of 200 vectors), where pi �N μ¼ 0,σ2 ¼ 9ð Þ.
Figure 1c shows the distribution of perturbed abundances
at t1 (light purple points) and after k time steps (dark pur-
ple points). As expected from Figure 1a, the correlation
between eN1 and eN2 (computed from all 200 perturbed
abundances) at t1 + k is almost zero (ρ¼ 0:01; Figure 1c).
Similarly, Figure 1d shows the distribution of perturbed
abundances at t2 (light purple points) and after k time
steps (dark purple points). As expected from Figure 1b,
the correlation between eN1 and eN2 at t2 + k is strong and
negative (ρ¼ − 0:76; Figure 1d). This numerical exercise
illustrates the main question we address in this study:
How does the absence (Figure 1c) or presence (Figure 1d)
of species correlations at different community states
impact whole-community sensitivity to perturbations?

Decomposing community sensitivity to
perturbations

When a community is at a stable fixed point, that is,
N¼N� with f N�ð Þ¼ 0, the response of a community to
pulse perturbations has been studied using several differ-
ent indicators such as recovery rate (Arnoldi et al., 2018)
and reactivity (Neubert & Caswell, 1997). Nevertheless,
when communities are under cyclic or chaotic dynamics,
it is necessary to establish a measure of community
response that does not depend on a return to a fixed
point. Therefore, here we focus on a measure known as
the volume expansion rate, which is related to how much
change we expect to see in N under perturbations—that
is, the community sensitivity to perturbations (Figure 2a)
(Cenci et al., 2020; Cenci & Saavedra, 2019). Although
this measure was originally used to measure sensitivity to
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perturbations on the parameters of population dynamics
(Cenci & Saavedra, 2019), we prove that this measure is
also informative about perturbations on species abun-
dances (Materials and methods). In what follows, we
derive our framework of partitioning community sensi-
tivity into contributions of individual species and of spe-
cies correlations.

Because we typically have no information about the
effect of external perturbations, here we assume that
pulse perturbations at an arbitrary time t(p tð Þ) follow a

distribution with mean vector μt and covariance matrix
Σt (Figure 2a; Materials and methods). Using the linear-
ized dynamics of p, we can then obtain the covariance
matrix of p t+ kð Þ as Σ¼ ekJΣtekJ

>
(Appendix S1: Section

S1). Thus, Σ is obtained via a transformation of the initial
covariance matrix (Σt) due to interspecific effects present
in the Jacobian matrix J (Figure 2a). We assume that J
is almost constant from time t to t+ k, which is a
reasonable assumption whenever k or dN

dt is small
(Medeiros et al., 2023). Note, however, that J is evaluated

F I GURE 1 Correlations in how species respond to perturbations depend on community state. (a, b) Limit cycle of a two-species

predator–prey model (black points; Equation 2) with two pulse perturbations (p¼ − 7,0½ � > : red arrow; p¼ 7,0½ � > : blue arrow) affecting the

abundance of the predator (N1) at two different points in time (t1 and t2). The middle panel shows the abundance time series (solid line:

predator; dotted line: prey) and the two time points as vertical dashed lines. (a) At time t1, the effect of both perturbations on prey

abundance after k¼ 3 time steps (ΔN2) is similar (ΔN2 ¼ − 11:1 when predator decreases, in red; ΔN2 ¼ − 16:7 when predator increases, in

blue). (b) In contrast, at time t2, one perturbation has a much greater effect on prey abundance than the other (ΔN2 ¼ 11:2 when predator

decreases, in red; ΔN2 ¼ 3:5 when predator increases, in blue). (c, d) Same limit cycle as in (a) and (b) but showing the outcome of multiple

random perturbations (pi �N μ¼ 0,σ2 ¼ 9ð Þ) that change N (black point) into eN (light purple points) at times t1 (c) and t2 (d). (c) At time

t1 + k, there is no correlation between the perturbed abundances of the predator (eN1) and of the prey (eN2) (dark purple points; correlation:

−0.01). (d) In contrast, at time t2 + k, there is a strong correlation between the perturbed abundances of the predator and of the prey (dark

purple points; correlation: −0.73).
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at N and, therefore, can change along a trajectory (i.e., it
is state-dependent). Also note that, in addition to know-
ing J, knowledge of Σt and k is required to compute Σ.
The accuracy of Σ in describing the distribution of
perturbed abundances has been verified for communities
at a stable fixed point (Arnoldi et al., 2018), whereas here
we perform simulations to confirm this accuracy in other
cases (Appendix S1: Section S2, Figure S1).

Without loss of generality, we can assume that p tð Þ
and, therefore, p t+ kð Þ follow a multivariate normal

distribution. In this case, the covariance matrices Σt and
Σ can be visualized as 95% confidence S-dimensional
ellipses surrounding perturbed abundances (Figure 2a).
Importantly, the determinants jΣt j and jΣ j are propor-
tional to the volume of such ellipses (Ives et al., 2003; Lu
et al., 2021; Strang, 2016) and represent the overall
change in species abundances following random pulse
perturbations (i.e., community sensitivity). Alternatively,
the change of an infinitesimal volume around N (i.e.,
volume expansion rate) is given by the divergence

F I GURE 2 Decomposing community sensitivity into contributions of individual species and of species correlated responses. (a) (left)

Diagram of a trajectory showing how perturbed abundances at time t (light purple points) generated using covariance matrix Σt (black

circle) can be described at time t+ k (dark purple points) by covariance matrix Σ (black ellipse). (a) (center) Decomposition of community

sensitivity to perturbations (volume expansion rate, log jΣ j) into contributions of individual species (variances in Σ,
PS

i¼1 logσ
2
i ) and of

species correlations (determinant of correlation matrix, log jP j), which is shown for two species. (a) (right) With S species, we can compute

the ratio jP j¼ jΣjQS

i¼1
σ2i
, where jP j! 0 indicates that community sensitivity is minimized due to species correlations. (b) (left) Same

predator–prey limit cycle (black points; Equation 2) and time points (t1 and t2) as in Figure 1 showing that Σ (black ellipses) indeed captures

the lack of correlation of perturbed abundances at time t1 + k and the strong correlation at time t2 + k (k¼ 3). (b) (right) Community

sensitivity decomposition at each point in time for the two-species model. Whereas community sensitivity (purple line) is dominated by the

contribution of individual species (orange line) at time t1 (jP j ≈ 1), it is dominated by the contribution of species correlations (green line) at

time t2 (jP j� 1).
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of the vector field f : tr Jð Þ¼PS
i¼1

∂f i
∂Ni

¼r� f Nð Þ
(Cenci & Saavedra, 2019; Strogatz, 2018). We show that
jΣ j is equivalent to tr Jð Þ via the following expression:
log jΣ j¼ log jΣt j +2ktr Jð Þ (Materials and methods).
Thus, we define log jΣ j as our measure of
state-dependent community sensitivity to perturbations
and conclude that, for a fixed value of jΣt j and k, a larger
log jΣ j implies a larger tr Jð Þ. Note that abundance
changes must be interpreted in terms of their units and
abundances are typically normalized when working with
empirical data (Materials and methods).

Because the determinant of any covariance matrix
can be written as the product of variances (σ2i ) times the
determinant of the correlation matrix P (Appendix S1:
Section S3), we can decompose the community sensitivity
( log jΣ j) into contributions of individual species and of
species correlations:

log jΣ j¼
XS
i¼1

logσ2i + log jP j , ð1Þ

where the determinant of P (jP j) depends on all correla-
tions ρij between species i and j (i, j¼ 1,…,S). Note that ρij
is calculated by dividing the covariance between species i
and j (i.e., ijth element of Σ) by σiσj. Therefore,
Equation (1) shows that species i impacts log jΣ j through
its variance σ2i (i.e., the sensitivity of species i to perturba-
tions; Medeiros et al. [2023]), which expands the volume
of perturbed abundances along a given direction
(Figure 2a). In the absence of interspecific effects and cor-
relations in initial perturbations (i.e., J and Σt are diago-
nal matrices), P¼ I and jP j¼ 1, implying that log jΣ j is
completely determined by

PS
i¼1 logσ

2
i . However, in the

presence of interspecific effects, 0≤ jP j ≤ 1, and species
correlations impact community sensitivity by decreasing
the volume of perturbed abundances (Figure 2a). That is,
given a contribution of individual species (

PS
i¼1 logσ

2
i ),

the contribution of species correlations (log jP j) can only
decrease community sensitivity (i.e., decrease log jΣ j)
(Figure 2a). This result suggests that an intuitive way to
understand the relative importance of species correla-

tions is to consider the following ratio: jP j¼ jΣjQS

i¼1
σ2i
.

Thus, jP j! 1 indicates that community sensitivity is
completely explained by the contribution of individual
species, whereas jP j! 0 indicates that community sensi-
tivity is completely explained by the contribution of spe-
cies correlations. This result is related to principal
component analysis, where eigenvalues of the correlation
matrix close to zero would indicate that the distribution
of perturbed abundances is closer to an ellipse than to a
circle (i.e., jP j! 0).

To illustrate how we can understand log jΣ j in light
of
PS

i¼1 logσ
2
i and log jP j (Figure 2b), we use again the

predator–prey model from Equation (2). As already
shown in Figure 1, depending on the location of the com-
munity along this predator–prey cycle, species correla-
tions will be weaker (Figure 1a,c) or stronger
(Figure 1b,d). Figure 2b shows that Σ (black ellipses)
indeed captures the changes in the distribution of
perturbed abundances at time t1 (weak species correla-
tions) and time t2 (strong species correlations).
Importantly, this figure shows that depending on the
community state (N), log jΣ j (purple line) can be domi-
nated by

PS
i¼1 logσ

2
i (orange line, t1, jP j ≈ 1) or by

log jP j (green line, t2, jP j� 1; Figure 2b).

Understanding the contribution of species
correlations using models

We now illustrate how our framework can provide
important insights about the state-dependent impact of
species correlations ( log jP j) on community sensitivity to
perturbations ( log jΣ j). To do so, we use three models
that generate population dynamics without a stable fixed
point: a two-species predator–prey model (Equation 2), a
three-species food chain model (Equation 3), and a
four-species competition model (Equation 4) (Materials
and methods). We generate synthetic time series with 250
points ( N tð Þf g, t¼ 1,…,250) from each model and calcu-
late the analytical Jacobian matrix evaluated at each N(t)
(J; Materials and methods). Then, for each point
in time, we compute the covariance matrix Σ
and, finally, the contribution of species correlations
as log jP j¼ log jΣ j −PS

i¼1 logσ
2
i .

Figure 3 shows the contribution of species correla-
tions (log jP j, green line) through time for each model.
Overall, Figure 3 provides three main insights about the
impact of species correlations on community sensitivity.
First, for all models, we find a large variation in log jP j
over time. That is, there are points in time when species
correlations have no impact on community sensitivity
(i.e., jP j ≈ 1, for example, at time t1) and points in time
when they dominate community sensitivity (i.e., jP j� 1,
for example, at time t4). Second, we find that P (right
panels in Figure 3) contains information that cannot be
directly extracted from J (left panels in Figure 3).
Because we convert J into Σ (and therefore into P) by
computing a matrix exponential (i.e., ekJ), P is the result
of the sum of all indirect effects between species. Thus,
the sign and strength of species correlations (ρij; for
example right panel in Figure 3c) cannot be deduced
from the sign and strength of interspecific effects (jij; for
example, left panel in Figure 3c). Finally, we find that,
although log jP j is a complicated nonlinear function of
ρij(i, j¼ 1,…,S) for large S, it is mainly driven by the
strongest ρij value in P (e.g., right panel in Figure 3b and
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Appendix S1: Figure S3). That is, higher values of
maxðρ2ijÞ lead to more negative values of log jP j (i.e.,
stronger contribution of species correlations;
Appendix S1: Figure S3). We confirm this relationship
between maxðρ2ijÞ and log jP j by randomly generating
multiple correlation matrices with up to S¼ 10
species (Appendix S1: Figure S4). Because it is very
likely that at least two species will respond in a
correlated way in a large community (i.e., at least one
large ρij), this analysis also shows that log jP j is expected
to decrease with the number of species (Appendix S1:
Figure S5).

Inferring the contribution of species
correlations from time series

When dealing with empirical communities, there is typically
a large uncertainty regardingmodel structure and parameters
(Bartomeus et al., 2021; Cenci & Saavedra, 2019; Ye et al.,
2015). Thus, calculating the time-varying Jacobian matrix (J)
using a parameterized model to investigate the impact of
species correlations on community sensitivity can be
unfeasible. In light of these limitations, we now show
how to apply our framework by inferring J directly from
noisy time-series data without using model equations.

F I GURE 3 Impact of species correlated responses on community sensitivity changes over time under three population dynamics

models. (a–c) (center) Contribution of species correlations to community sensitivity ( log jP j, green line) over time for a two-species

predator–prey model (a, Equation 2), a three-species food chain model (b, Equation 3), and a four-species competition model (c, Equation 4).

Times t1 through t4 (vertical dashed lines) depict four arbitrary community states with an increasing contribution of species correlations (i.e.,

progressively lower log jP j). (a–c) (left) Jacobian matrix (J) containing interspecific effects at each of the four states. (a–c) (right) Correlation
matrix (P) containing species correlated responses to perturbations at each of the four states. Although one or more correlation values in P
become stronger, there is no clear pattern in how J changes from time t1 to t4. Note that all diagonal elements in P are equal to 1 and are

colored in gray. Also note that we show a smaller time window for the three-species model to improve visualization.
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Given abundance time series for S species, we can
infer J at each point using a locally weighted state-space
regression method known as the S-map (Materials and
methods) (Cenci et al., 2019; Chang et al., 2021; Deyle
et al., 2016; Sugihara, 1994). To verify the accuracy of
inferring the contribution of species correlations
(log jP j) from time series, we use the S-map to infer J at
each point in time for each of our three synthetic time
series (Materials and methods). We then compute
log jP j¼ log jΣ j −PS

i¼1 logσ
2
i at each point in time. We

illustrate this entire procedure for the two-species
predator–prey model in Appendix S1: Figure S7. Because
empirical time series are usually contaminated with
observational noise (Cenci et al., 2019; Sugihara, 1994),
we apply Gaussian noise to each time series before
performing the S-map (Materials and methods).
Importantly, our framework focuses on inferring only
two quantities: the trace of J, which is equivalent to
log jΣ j, and the trace (in log) of Σ. By relying on an accu-
rate inference of just these two quantities, our framework
minimizes inference errors, especially in communities
with a large number of species (Cenci et al., 2020;
Cenci & Saavedra, 2019). Note, however, that the amount
of time-series data required to accurately infer the
Jacobian matrix grows exponentially with the number of
species (Cenci et al., 2019; Chang et al., 2021).

Because we can only infer the elements of J up to a
constant (Cenci & Saavedra, 2019) and the value of
log jP j depends on S and k (Appendix S1: Figures S5 and
S6), here we focus on qualitatively detecting points in
time with extreme (low or high) values of log jP j
(Materials and methods). We find the inferred log jP j to
be very similar over time to the analytical log jP j for all
three synthetic time series (Figure 4). In particular, for all
synthetic time series, we obtain an accuracy approxi-
mately twice as high as the 25% accuracy of a random
guess: 43.6% for the two-species predator–prey model
(Figure 4a), 54.8% for the three-species food chain model
(Figure 4b), and 53.2% for the four-species competition
model (Figure 4c). Note that if we were randomly classi-
fying points as having a low or high log jP j (instead of
using the inferred log jP j), our accuracy of matching the
analytical classification would be, on average, 25%.
Although our accuracy can decrease with stronger observa-
tional noise and under uncertainty in Σt and k (Materials
and methods), we still obtain an accuracy higher than
25% for most cases (Appendix S1: Figures S8 and S9).

Most importantly, we find low and high values of
log jP j to be concentrated along certain regions of each
attractor (Figure 4 and Appendix S1: Figure S11). For
example, for the two-species predator–prey model, we
find that species correlations can only decrease

community sensitivity when the prey abundance (N2) is
high (Figure 4a). We confirm this result with an addi-
tional two-species predator–prey model (Appendix S1:
Figure S11) and find similar simple state dependencies in
the three-species food chain model (Figure 4b) and in the
four-species competition model (Figure 4c). These results
suggest that the impact of species correlations should
only be observed under certain species abundance states,
which we can accurately detect using an inference
approach based on time-series data.

Application to experimental communities

Lastly, we showcase our framework using two empirical
communities to gain further insights into how and
when species correlations may reduce community sensi-
tivity to perturbations. We use two experimental time
series with two and three species that have been shown
to exhibit cyclic and chaotic dynamics, respectively,
under laboratory conditions (Becks et al., 2005; Blasius
et al., 2020) (Materials and methods). Following our ana-
lyses with synthetic time series, we apply the S-map
to both time series to infer the contribution of species
correlations to community sensitivity over time as
log jP j¼ log jΣ j −PS

i¼1 logσ
2
i . Given our accuracy in

detecting regions with extreme (low or high) values of
log jP j in synthetic time series (Figure 4), we follow the
same procedure for these experimental time series.

We find that the ratio between community sensitivity

and the contribution of individual species jP j¼ jΣjQS

i¼1
σ2i

� �
changes considerably across time for both the two-species
(range of jP j: 0.77–0.99, Figure 5a) and the three-species
community (range of jP j: 0.64–0.93, Figure 5b). Note
that jP j depends on time step k and can decrease (i.e.,
contribution of species correlations can increase) when
this time step is larger (Appendix S1: Figure S12). This
suggests that the contribution of either individual species
or species correlations can dominate the sensitivity of
these communities (jP j close to 1 or close to 0, respec-
tively), depending on the point in time. In fact, as
expected from our analyses with synthetic time series, we
find that time-series points with low or high log jP j
(dark or light green points in Figure 5a,b) are clearly sep-
arated in the state space of species abundances. For the
two-species community, we find that prey abundance is
high when the contribution of species correlations is high
and prey abundance is low when this contribution is low
(two-sample t-test: t 118:7ð Þ¼ 10:02, p<0:0001). Thus, we
find a similar state-dependent pattern in log jP j in the
two-species experimental community (Figure 5a) and
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in the two-species predator–prey model (Figure 4a and
Appendix S1: Figure S11). Interestingly, we also find
that time windows with coherent predator–prey cycles
(Blasius et al., 2020) retain this strong state-dependent
pattern, whereas time windows with noncoherent
cycles do not show the state-dependent pattern
(Appendix S1: Figure S10). As for the three-species
community, we find that the abundance of the pre-
ferred prey is low when the contribution of species cor-
relations is high and the abundance of the preferred
prey is high when this contribution is low (two-sample

t-test: t 9:69ð Þ¼ − 3:38, p¼ 0:007). This result provides
further evidence that the impact of species correlations
on community sensitivity depends on the abundance of
particular species.

DISCUSSION

The response of an ecological community to perturba-
tions (e.g., recovery, constancy, sensitivity) is a property
that emerges from the responses of its constituent species

F I GURE 4 State-dependent impact of species correlated responses can be inferred directly from noisy time series. (a–c) (center) For
each population dynamics model (a, Equation 2; b, Equation 3; c, Equation 4), the top panel shows the contribution of species correlations

( log jP j) over time computed analytically from the model equations, whereas the bottom panel shows log jP j inferred from the noisy time

series with the S-map. Values of log jP j for each panel are independently classified as having a high (dark green circles) or low (light green

triangles) contribution to community sensitivity. Points not classified as high or low are not shown to improve visualization. The S-map

accuracy indicates the percentage of high and low points in the bottom panel that match those in the top panel (expected accuracy of

random guess: 25%). (a–c) (right) State space of species abundances (with noise and normalized) for each model showing that the inferred

high and low values of log jP j are concentrated along certain community states. For instance, species correlations only reduce community

sensitivity when the prey abundance is high under the two-species model (a). Note that for the three- and four-species models (b, c) we show

the two species that most clearly separate high and low values of log jP j.
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and the interactions among them (Kéfi et al., 2019;
Pennekamp et al., 2018; Pimm, 1984; Tilman et al., 2006).
Hence, understanding how responses at the species-level
scale up to shape the response of the whole community
has remained an important problem in ecology (Clark
et al., 2021; Kéfi et al., 2019; Levin & Lubchenco, 2008;
White et al., 2020). In this study, we tackled this problem
when population dynamics fluctuate and, therefore,
interspecific effects (i.e., elements of the Jacobian matrix)
change over time and have time-varying impacts on
whole-community response to perturbations. Our work

provides three main insights into how species correlated
responses to perturbations impact whole-community
response.

First, by developing a framework to decompose the
community sensitivity to perturbations into contributions
of individual species and of species correlations, we dem-
onstrate that correlations (positive or negative) can only
dampen community sensitivity (Figure 2). Previous work
on compensatory dynamics established that negative cor-
relations increased the constancy of total abundance,
whereas positive correlations decreased it (Brown et al.,

F I GURE 5 Impact of species correlated responses depends on prey abundance for two experimental communities. (a) (left) The top

panel shows the (normalized) abundance time series of a predator (rotifers, solid line) and its prey (algae, dashed line; data from Blasius

et al. [2020]). The bottom panel shows the contribution of species correlations to community sensitivity ( log jP j) with points being classified

as having a high (dark green circles) or low (light green triangles) contribution. Points not classified as high or low are not shown to improve

visualization. (a) (right) The left panel shows the state space of species abundances with each point colored according to the contribution of

species correlations. The right panel shows that the prey abundance (boxplots) is higher for points with a high than with a low contribution

(asterisks denote p<0:0001 for a two-sample t-test). (b) (left) The top panel shows the (normalized) abundance time series of a predator

(ciliate, solid line), its preferred prey (bacteria, dashed line), and its less-preferred prey (bacteria, dotted line; data from Becks et al. [2005]).

The bottom panel shows log jP j over time with points being classified as in (a). (b) (right) The left panel shows the state space of prey

abundances with each point colored according to the contribution of species correlations. The right panel shows that the preferred prey

abundance (boxplots) is lower for points with a high than with a low contribution (asterisks denote p¼ 0:007 for a two-sample t-test).
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2016; Fischer et al., 2001; Gonzalez & Loreau, 2009;
Tilman et al., 2006). Although constancy is an important
measure of community response, it can only be computed
over a long stretch of time (i.e., is not state-dependent)
and is most relevant when abundances are assumed to be
at a stable fixed point (Gonzalez & Loreau, 2009). Under
the abundance fluctuations investigated here, the volume
expansion rate of perturbed abundances (Cenci et al.,
2020; Cenci & Saavedra, 2019; Ives et al., 2003) provides a
more meaningful and state-dependent measure of the
short-term community response to perturbations.
Overall, based on our framework, there are two ways for
perturbed abundances to have a small volume expansion
rate in state space: The contribution of individual species
is low (i.e., variances in Σ are small) or the contribution
of species correlations is high (i.e., jP j is close to zero).
Note that if variances in Σ are large but jP j is close to
zero, perturbed abundances will stretch along one or
more directions in state space even if the volume expan-
sion rate is small. Thus, a small volume expansion rate
must be carefully interpreted in large communities for
which perturbed abundances can still stretch along cer-
tain directions. Overall, to understand how perturbations
might affect an entire community (Cenci & Saavedra,
2019), it is important to combine information on the
response of individual species (Medeiros et al., 2023) with
information on species correlations.

Second, we find that the impact of species correla-
tions on community sensitivity changes over time and
essentially depends on the maximum squared correlation
value in the correlation matrix P (Figure 3). Thus, a sin-
gle strong correlation value in P (positive or negative) is
generally sufficient to bring jP j close to zero, greatly
reducing the volume expansion rate (i.e., reducing com-
munity sensitivity). This single strong correlation pro-
vides a simple mechanism for how a pair of species
responding together to perturbations may dampen com-
munity sensitivity, although this mechanism may not be
enough in large communities (Appendix S1: Figure S4).
In addition, we show that the covariance matrix Σ results
from a sum of all indirect effects between species
(Equation 6), suggesting a nontrivial relationship between
interspecific effects and species correlations. Given the
importance of indirect effects for ecological dynamics in
species-rich communities (Pires et al., 2020; Saavedra et al.,
2017; Wootton, 1994), investigating the links between
time-varying interspecific effects and species correlations
could be an interesting future direction. Specifically, com-
bining our framework with recent improvements of the
S-map approach to inferring the Jacobian matrix of large
communities from time series can be a fruitful research
avenue (Cenci et al., 2019; Chang et al., 2021).

Finally, we find that the contribution of species corre-
lations to community sensitivity depends on community
state under both models (Figure 4) and data (Figure 5).
That is, even though population dynamics may follow a
cyclic or chaotic attractor (i.e., perturbed abundances
eventually return to the attractor), short-term responses
to perturbations may vary considerably along the attrac-
tor. In particular, points in time with a high or low con-
tribution of species correlations are not scattered along
a cyclic or chaotic attractor but, rather, are confined to
specific regions of the state space of abundances.
Therefore, our results indicate that species correlations
may only contribute to decrease community sensitivity
under certain values of species abundances (e.g., when
prey abundance is high; Figures 4a and 5a). Previous
food web studies found that species responses after
predator removal or introduction depended on the sign
and strength of species interactions (Samhouri et al.,
2017; Schneider et al., 2012; Worsfold et al., 2009). We
find an extension of these results for cases where
state-dependent interspecific effects create state-dependent
species correlations. Given that consumer–resource inter-
actions frequently generate cyclic or chaotic dynamics
(Becks et al., 2005; Begon et al., 1996; Blasius et al., 2020;
Deyle et al., 2016; Hastings & Powell, 1991), such
state-dependent impacts of species correlations on com-
munity response to perturbations may be widespread in
natural communities. Here, we focus on small communi-
ties under controlled conditions as the best-case scenario
to verify whether the patterns that we observe under
models also appear in the data. Nevertheless, applying our
framework to natural communities should be an interest-
ing next step if a long time series depicting an attractor is
available. A final caveat is that our framework does not
address other realistic cases where communities undergo
nonequilibrium transient dynamics, a challenge that
remains for future research.

A potential application of these state-dependent pat-
terns is that, in regions with strong correlated responses,
an intentional perturbation on a given species should
inform us about the response of another species
(e.g., Figure 1a,b). This could be useful, for instance, if
we wish to add or remove individuals of a given species
but want some other species to change as little as possible
(e.g., blue trajectory in Figure 1b). Thus, by decreasing
whole-community sensitivity to perturbations, species
correlations increase the predictability of perturbation
outcomes. All in all, our framework allows us to better
understand how and when species interactions can
dampen community sensitivity to perturbations when we
relax the assumption that communities are at a stable
fixed point.
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MATERIALS AND METHODS

Synthetic time series from population
dynamics models

We use three synthetic time series generated from popu-
lation dynamics models with S¼ 2, S¼ 3, and S¼ 4 spe-
cies to illustrate the impact of species correlations on
community sensitivity to perturbations. The first model
depicts the population dynamics of a predator (Species 1)
and its prey (Species 2) (Yodzis, 1989):

dN1

dt
¼ cN1

aN2
2

1+ ahN2
2

� �
− dN1,

dN2

dt
¼ rN2 1−

N2

K

� �
−N1

aN2
2

1+ ahN2
2

� �
,

ð2Þ

where c and d are the predator conversion and death
rates, a is the encounter rate, h is the handling time, and
r and K are the prey intrinsic growth rate and carrying
capacity, respectively. Here, we explore the limit cycle
that emerges when c¼ 0:5, a¼ 0:002, h¼ 4, d¼ 0:1,
r¼ 0:5, and K ¼ 100 (Yodzis, 1989) (Figure 1 and
Appendix S1: Figure S2). The second model depicts a
food chain with a producer (Species 1), a primary con-
sumer (Species 2), and a secondary consumer (Species 3)
(Hastings & Powell, 1991):

dN1

dt
¼ rN1 1−

N1

K

� �
−

a1N1N2

1+ b1N1
,

dN2

dt
¼ − sN2 + hN1N2 −

a2N2N3

1+ b2N2
,

dN3

dt
¼ − lN3 + nN2N3,

ð3Þ

where r and K are the producer intrinsic growth rate and
carrying capacity, a1 and a2 are encounter rates, b1 and
b2 are handling times, s and l are consumer death rates,
and h and n are consumer conversion rates. We explore
the chaotic attractor that arises when r¼ 4:3, K ¼ 50,
a1 ¼ 0:1, b1 ¼ 0:1, a2 ¼ 0:1, b2 ¼ 0:1, s¼ 1, h¼ 0:05, l¼ 1,
and n¼ 0:03 (Upadhyay, 2000) (Appendix S1: Figure S2).
The third model consists of the classic Lotka–Volterra
model with competitive interactions (Case, 2000):

dNi

dt
¼Ni ri +

XS
j¼1

aijNj

 !
, ð4Þ

where ri (ri >0) is an element of the vector r representing
the intrinsic growth rate of species i, and aij (aij ≤ 0) is an
element of the interaction matrix A representing the
per-capita effect of species j on species i. We investigate

the chaotic attractor that emerges with S¼ 4 and the fol-
lowing parameter values (Vano et al., 2006)
(Appendix S1: Figure S2):

r¼

1

0:72

1:53

1:27

26664
37775, A¼

− 1 − 1:09 − 1:52 0

0 − 1 − 0:44 − 1:36

− 2:33 0 − 1 − 0:47

− 1:21 − 0:51 − 0:35 − 1

26664
37775:

For each model, we first numerically integrate the
dynamics using a Runge–Kutta method with a time step
of 0.05 and obtain a time series with 5000 points. Then
we sample equidistant points, obtaining a final multivari-
ate time series with 250 points ( N tð Þf g, t¼ 1,…,250).
Using this protocol, we obtain time series that fully sam-
ple the attractor of each model (Appendix S1: Figure S2).

Community sensitivity as volume
expansion rate

A generic population dynamics model for a community
with S species may be written dN

dt ¼ f Nð Þ, where
N¼ N1,…,NS½ �> is the vector of species abundances and
f ¼ f 1,…, f Sð Þ (f i: ℝ

S!ℝ) is a set of functions. At any
given state N, this community can be affected by a small
pulse perturbation p¼ p1,…,pS½ �Τ that changes N into eN
(Bender et al., 1984). The linearized dynamics of such a
perturbation is given by (Appendix S1: Section S1)
(Medeiros et al., 2023; Strogatz, 2018)

dp
dt

¼ J

����eN¼N
�p, ð5Þ

where JjeN¼N (hereafter J) is the Jacobian matrix of partial
derivatives with elements jij ¼ ∂f i

∂Nj
(interspecific effects)

evaluated at N. Note that J is state-dependent as it
depends on the community state N. We assume that per-
turbations at an arbitrary time t (p tð Þ) follow a distribu-
tion with mean vector μt and covariance matrix Σt

(Figure 2a). Although this is not necessary for our deriva-
tion (Appendix S1: Section S1), we focus on perturbations
that are not biased in a given direction (i.e., μt ¼ 0) and
that affect each species equally and independently (i.e.,
Σt ¼ cI, where I is the identity matrix and c is the pertur-
bation variance). After k time steps, the covariance
matrix describing the distribution of p t+ kð Þ will be given
by (Appendix S1: Section S1) (Arnoldi et al., 2018;
Medeiros et al., 2023)

Σ¼ ekJΣte
kJΤ , ð6Þ

where eA ¼P∞
i¼1

1
i!A

i is the exponential of matrix A.
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Because the determinant of a matrix represents the
volume of the S-dimensional parallelepiped formed by its
row vectors (Lu et al., 2021; Strang, 2016), the volume of
perturbed abundances at times t and t+ k will be propor-
tional to the determinants of the respective covariance
matrices: jΣt j and jΣ j. Here, we are interested in the
change in volume from time t to t+ k and, therefore, con-
sider the volume of initial perturbations (jΣt j) to be fixed.
The determinant of Σ is then given by

jΣ j¼j ekJΣte
kJΤ j

¼jΣtkekJekJΤ j
¼jΣtke2kΛ j

¼jΣt j
YS
i¼1

e2kλi ,

ð7Þ

where Λ is a diagonal matrix containing the eigenvalues of
J(λ1,…,λS). Taking the logarithm of both sides of Equation
(7), we obtain a connection to the volume expansion rate:

log jΣ j¼ log jΣtj
YS
i¼1

e2kλi

 !

¼ log jΣt j +2k
XS
i¼1

λi

¼ log jΣt j +2ktr Jð Þ,

ð8Þ

where tr Jð Þ is the trace of J. Note that
tr Jð Þ¼PS

i¼1
∂f i
∂Ni

¼r� f Nð Þ represents the divergence of the
vector field f around N (i.e., volume expansion rate)
(Cenci et al., 2020; Cenci & Saavedra, 2019; Strogatz,
2018). Therefore, log jΣ j is equivalent to tr Jð Þ and repre-
sents the community sensitivity to pulse perturbations on
abundances.

Computing the contribution of species
correlations from time series

For each synthetic time series generated from a popula-
tion dynamics model, we compute the time-varying con-
tribution of species correlations (log jP j) in two different
ways. Recall that log jP j is given by the difference
between the community sensitivity ( log jΣ j) and the con-
tribution of individual species (

PS
i¼1 logσ

2
i ) (Equation 1).

First, we compute log jP j analytically by calculating J
from the model equations (Equations 2–4) and evaluating
it at each N tð Þ. Second, we compute log jP j by inferring
J directly from the time series with the S-map method
(see next section). To compute Σ, we assume minimal

knowledge of the distribution and evolution of perturba-
tions and set Σt ¼ I and k at a fixed value over time (k¼ 3
for two-species predator–prey and four-species competi-
tion models, and k¼ 0:5 for the three-species food chain
model). These values of k are proportional to the average
rate of change (i.e., dN

dt ) of each model and using other
values of k gives qualitatively similar results
(Appendix S1: Figure S6). Then, for each point in time,
we use Σ to calculate the contribution of species correla-
tions as log jP j¼ log jΣ j −PS

i¼1 logσ
2
i .

Instead of focusing on the exact values of log jP j over
time, here we focus on qualitatively detecting community
states with extreme (low or high) log jP j values. That is,
after computing log jP j analytically (hereafter analytical
log jP j) or with the S-map (hereafter inferred log jP j),
we classify each time-series point as having a low (i.e.,
log jP j higher than its 75th percentile) or high (i.e.,
log jP j lower than its 25th percentile) contribution of
species correlations. We perform this classification inde-
pendently for the analytical and inferred log jP j. Then,
to test the accuracy of inferring log jP j with the S-map,
for each synthetic time series, we compute the percentage
of points classified as having a low (or high) analytical
log jP j that also have a low (or high) inferred log jP j.
Note that the random expectation of this accuracy (e.g., if
we shuffled the inferred log jP j values) is 25%.

Inferring the time-varying Jacobian matrix
with the S-map

Here we describe the S-map, a locally weighted
state-space regression method that has been shown to
provide accurate inferences of the time-varying Jacobian
matrix (J) from time series (Appendix S1: Figure S7)
(Cenci et al., 2019; Chang et al., 2021; Deyle et al., 2016;
Sugihara, 1994). Given a multivariate time series
containing the abundances of S species over T time
points ( N tð Þf g, t¼ 1,…,T), the S-map allows us to infer J
at each point. This method is based on fitting a linear
regression of the following form to the time series:
Ni t+1ð Þ¼ ci0 +

PS
j¼1cijNj tð Þ, where cij ¼ ∂Ni t+1ð Þ

∂Nj tð Þ is a
discrete-time approximation of the Jacobian matrix ele-
ment jij. However, fitting this linear regression would not
capture the state-dependent nature of J, that is, J funda-
mentally depends on N. Thus, the S-map consists of
fitting this linear regression locally for each target point
N t�ð Þ by giving a stronger weight to points that are closer
to it in state space. This is done by finding a solution for
c in b¼Ac, where bt ¼wtNi t+1ð Þ, atj ¼wtNj tð Þ,
wt ¼ exp − θkN tð Þ−N t�ð Þk

d

h i
, and d¼ 1

T

PT
t¼1

���N tð Þ−N t�ð Þ
���.
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Thus, b�ℝT − 1 contains the abundances at t+1
weighted by the relative distance of each point to the tar-
get point, A�ℝ T − 1ð Þ× S+1ð Þ is the weighted data matrix
of abundances at t, and c�ℝS+1 estimates the ith row of
J at N t�ð Þ as well as an intercept term. We obtain the
solution for c via singular value decomposition (Deyle
et al., 2016), which is equivalent to the ordinary
least-squares solution (Cenci et al., 2019). Finally, the
parameter θ determines how strongly the regression is
localized around each target point N t�ð Þ, and we select
its value via abundance predictions with leave-one-out
cross-validation (Cenci et al., 2019). That is, for a given θ
value, we fit the S-map to the time series after removing
one of its points (e.g., N t0ð Þ), use J at N t0 − 1ð Þ to predict
N t0ð Þ, and repeat this procedure by removing each of the
T points. We then select the θ value that minimizes the
mean prediction error across all T abundance
predictions.

We use the S-map on the three synthetic time series to
test the accuracy of this method in inferring the
time-varying contribution of species correlations (log jP j).
To do so, we first apply Gaussian noise to each synthetic
time series. Specifically, for each species i and time t, we
transform Ni tð Þ into Ni tð Þ+N μ¼ 0, σ2 ¼ δNi tð Þ½ �2� �

,
where δ¼ 0:1 (see Appendix S1: Figure S8 for δ¼ 0:2).
Then, for each time series, we fit the S-map with the
leave-one-out cross-validation procedure to select the best
θ parameter and use this value of θ to fit the S-map to the
whole time series and obtain J at each point in time.
Because species abundances typically vary in scale, we
normalize each noisy time series to zero mean and unit
standard deviation prior to apply the S-map (Cenci et al.,
2019; Deyle et al., 2016; Ushio et al., 2018). Following the
analysis with the analytical matrix J (see previous sec-
tion), we use each inferred matrix J to compute Σ by set-
ting Σt ¼ I and k to be a fixed value over time. We also
perform these analyses by adding noise to Σt and k to test
the robustness of our framework to uncertainty in these
quantities (Appendix S1: Figure S9).

Inferring the contribution of species
correlations in experimental communities

Here we describe how we apply our framework to two
experimental time series. The first time series represents a
two-species microcosm community containing the rotifer
Brachionus calyciflorus as a predator species and the alga
Monoraphidium minutum as its prey species (Blasius et al.,
2020). This community has been shown to exhibit popula-
tion cycles under constant experimental conditions for
approximately 300 predator generations (Blasius et al.,
2020). Due to eight missing data points and small differ-
ences in sampling intervals, we interpolate the original

time series using cubic hermite interpolation to obtain a
final time series with 358 points and equidistant sampling
intervals of 1.045 days. Using the original time series gave
very similar results to what is shown in Figure 5a. Because
this time series contains windows with coherent and
noncoherent predator–prey cycles (Blasius et al., 2020), we
also performed our analyses using one window with mostly
coherent and one window with mostly noncoherent cycles,
both with 80 points (Appendix S1: Figure S10).

The second time series represents a three-species
chemostat community containing the ciliate
Tetrahymena pyriformis as a predator species and the bac-
teria Pedobacter sp. and Brevundimonas sp. as its two prey
species (Becks et al., 2005; Pennekamp et al., 2019). It has
been demonstrated that under some experimental condi-
tions, this community can exhibit chaotic dynamics
(i.e., positive Lyapunov exponent) (Becks et al., 2005).
Because this time series contains equal sampling inter-
vals of 1 day, we did not use an interpolation procedure
for it. We use the time series starting from Day 14 because
of several missing data points prior to this day, which
resulted in a final time series with 42 points. Note that
42 points are more than enough to apply the S-map to a
three-species community (Munch et al., 2020).

After the previously described time series treatment,
we apply the S-map (see previous section) to both time
series to infer log jP j over time. Because of scale differ-
ences in species abundances, we normalize each time
series to zero mean and unit SD before applying the
S-map. Following our analyses with synthetic time
series, we select θ with leave-one-out cross-validation
(see previous section) and use the selected value to fit
the S-map to the whole time series and compute
log jP j¼ log jΣ j −PS

i¼1 logσ
2
i at each point in time. We

use each inferred matrix J to compute Σ by setting Σt ¼ I
and k¼ 1 because we have no information about how
perturbations could impact these communities (see
Appendix S1: Figure S12 for k¼ 3). Finally, we classify
each time series point as showing a low (i.e., log jP j
higher than its 75th percentile) or high (i.e., log jP j
lower than its 25th percentile) contribution of species
correlations.
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Appendix S1

Understanding the state-dependent impact of species correlated 

responses on community sensitivity to perturbations

Lucas P. Medeiros and Serguei Saavedra

Journal: Ecology

dt

Section S1: Derivation of expectation and covariance matrix

of perturbed abundances

Here, we derive the linear dynamics of small perturbations as well as the expectation and 

covariance matrix describing the distribution of these perturbations in the absence of a stable 

fixed point. Following the main text, we write the generic population dynamics of a community 

with S species as: dN = f(N), where N = [N1, ..., NS ]
⊤ is the vector of species abundances and

f = (f1, ..., fS) (fi: RS → R) is a set of functions describing species abundance growth rates.

Note that each fi also depends on a set of parameters, which we consider to be fixed over time.

At any given state N, a pulse perturbation p = [p1, ..., pS]
⊤ may change species abundances



from N into Ñ (i.e., Ñ = N + p) (Bender et al., 1984). We can obtain the linearized dynamics

of a small perturbation p by computing the Taylor expansion of dÑ
dt
around N (Medeiros et al.,

2023, Strogatz, 2018):

dÑ
dt

= f(N) +
∂f
∂Ñ

∣∣∣
Ñ=N

· (Ñ− N) +O(p⊤p), [S1]

where ∂f
∂N = J is the Jacobian matrix of partial derivatives with jij = ∂fi

∂Nj
(interspecific effects),

which is evaluated at N. If p is small, we can approximate its dynamics by taking just the linear

term (i.e., ignoring higher-order terms):

dÑ
dt

= f(N) +
∂f
∂Ñ

∣∣∣
Ñ=N

· (Ñ− N)

dN
dt

+
dp
dt

=
dN
dt

+ J|Ñ=N · p

dp
dt

= J|Ñ=N · p. [S2]

Therefore, the dynamics of a small perturbation p can be approximated by the linear equation

above (Medeiros et al., 2023, Strogatz, 2018). Note that we have not assumed the existence

of a stable fixed point here (i.e., N = N∗ with f(N∗) = 0) and, therefore, equation [S2] is

valid even when abundances are changing over time (e.g., under transients, cycles, or chaos).

Importantly, also note that J can change over time because it depends on species abundances

(N; i.e., state-dependent). For a given N vector at a given time t, we can obtain the solution for

equation [S2] over a short time period k by assuming that J does not change much from t to

t+ k: p(t+ k) = ekJp(t), where eA =
∑∞

i=1
1
i!
Ai is the exponential of matrix A (Arnoldi et al.,

2018, Medeiros et al., 2023).

As described in the main text, we often have no knowledge of how perturbations will affect

a given community at a given time. Thus, we assume that pulse perturbations at an arbitrary

2



time t (p(t)) follow a distribution with mean vector µt and covariance matrix Σt (Figure 2a).

Although this is not necessary for the derivations below, we focus on perturbations that are not

biased in a given direction (i.e., µt = 0) and perturbations that affect each species equally and

independently (i.e., Σt = cI, where c is a constant and I is the identity matrix). By defining

M = ekJ, we can derive the mean vector of the distribution of perturbations at time t + k

(Medeiros et al., 2023):

E[p(t+ k)] = E[Mp(t)]

= ME[p(t)]

= Mµt, [S3]

where E[X] = [E[X1], ...,E[Xn]]
⊤ is the vector of expected values for the random vector X =

[X1, ..., Xn]
⊤. Note that if µt = 0, then E[p(t + k)] = 0 (i.e., perturbations remain unbiased).

In the special case where p(t) follows a multivariate normal distribution, p(t+ k) also follows

a multivariate normal distribution because Mp(t) is a weighted sum of normal distributions.

Most importantly, we can also derive the covariance matrix of p(t+ k), which we denote asΣ

(Arnoldi et al., 2018, Medeiros et al., 2023):

Σ = E[(p(t+ k)− E[p(t+ k)])(p(t+ k)− E[p(t+ k)])⊤]

= ME[(p(t)− E[p(t)])(p(t)− E[p(t)])⊤]M⊤

= MΣtM⊤, [S4]

whereE[(X−E[X])(X−E[X])⊤] is the definition of the covariance matrix for the random vector

X. The ijth element of this matrix contains the covariance between random variableXi andXj:

cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj])]. Thus, Σ is obtained via a transformation of the

3



initial covariancematrix (Σt) due to interspecific effects present in the Jacobianmatrix J (Figure

2a). Note that, in addition to knowing J, knowledge ofΣt and k is required to computeΣ. The

accuracy ofΣ in describing the distribution of perturbed abundances has been verified under a

stable fixed point (Arnoldi et al., 2018) and in the next section we describe our simulations that

confirm this accuracy under cyclic or chaotic dynamics (Figure S1).

Section S2: Accuracy of covariance matrix in describing per-

turbed abundances

We perform perturbation simulations to verify the accuracy of the covariance matrix Σ =

ekJΣte
kJ⊤ (see previous section) in describing the distribution of perturbed abundances (Ñ =

N + p). To do so, we use the three synthetic multivariate time series with 250 points ({N(t)},

t = 1, ..., 250) generated from the population dynamics models described in the main text (see

Materials and Methods section). For each time series, we apply 300 pulse perturbations (p ∼

N (µt,Σt)) at each state N(t). We assume that perturbations are independent for each species

(i.e., covariances in Σt are zero) and are centered in N(t) (i.e., µt is zero). We also assume

that the standard deviation of perturbations (i.e., square root of diagonal elements of Σt) is the

same for every species and is set as 15% of the mean standard deviation of species abundances:

0.15 1
S

∑S
i=1 σNi

, where σNi
is the standard deviation of Ni for the whole time series. After

applying perturbations, we evolve each perturbed state Ñ over time for k time steps. We set

k = 3 for the 2-species predator-prey model (equation [2] in the main text), k = 0.5 for the 3-

species food chainmodel (equation [3] in themain text), and k = 3 for the 4-species competition

model (equation [4] in the main text). An example of these perturbed abundances (Ñ) at the

initial time t and final time t+ k can be seen in Figure 2b in the main text (initial: light purple

4



points; final: dark purple points).

For each time series and each stateN(t), we computeΣ using the analytical Jacobian matrix

J evaluated at N(t) as well as k andΣt used in the perturbation simulations. Then, we compute

the data covariancematrix S using the 300 perturbed abundances at time t+k (Ñ(t+k)). That is,

the ijth element of S contains the covariance between species i (Ñi(t+k)) and species j (Ñj(t+

k)) computed from the set of perturbed abundances (e.g., dark purple points in Figure 2b in the

main text). Figure S1 shows, for each population dynamics model, the elements of S (red lines)

and ofΣ (blue lines) over time. We find a strong correlation over time between the elements of

these twomatrices for all models: 2-species predator-preymodel: 0.87± 0.10 (mean± standard

deviation), 3-species food chain model: 0.91 ± 0.04, and 4-species competition model: 0.88

± 0.03. These strong correlations confirm that Σ captures how the distribution of perturbed

abundances changes over time for each state along an attractor.

Section S3: Determinant of covariance matrix

In the main text, we state that the determinant of a covariance matrix can always be written

as the product of variances times the determinant of the correlation matrix. Here, we provide

a mathematical proof for this statement and also prove that the determinant of the correlation

matrix is always between 0 and 1. Let us define a generic S × S covariance matrix as the

following symmetric and positive semi-definite matrix:

Σ =



σ2
1 σ2

12 · · · σ2
1S

σ2
12 σ2

2 · · · σ2
2S

...
... . . . ...

σ2
1S σ2

2S · · · σ2
SS


,
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where σ2
i is the variance of variable i and σ2

ij is the covariance between variables i and j. Note

that the correlation between i and j is given by: ρij =
σ2
ij

σiσj
. This allows us to rewrite Σ as:

Σ =



σ2
1 ρ12σ1σ2 · · · ρ1Sσ1σS

ρ12σ1σ2 σ2
2 · · · ρ2Sσ2σS

...
... . . . ...

ρ1Sσ1σS ρ2Sσ2σS · · · σ2
S


.

Let us denote the determinant of an arbitrary matrix A as |A|. Now, we can use the fact that if a

constant c multiplies the entire ith column (or row) of A, then: |A| = c|A′|, where A′ is matrix

A after dividing all elements in column (or row) i by c. Because each σi multiplies the entire

ith column of Σ, we have that:

|Σ| =
S∏

i=1

σi ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ1 ρ12σ1 · · · ρ1Sσ1

ρ12σ2 σ2 · · · ρ2Sσ2

...
... . . . ...

ρ1SσS ρ2SσS · · · σS

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In addition, because each σi multiplies the entire ith row of Σ, we have that:

|Σ| =
S∏

i=1

σ2
i ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 ρ12 · · · ρ1S

ρ12 1 · · · ρ2S

...
... . . . ...

ρ1S ρ2S · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

S∏
i=1

σ2
i · |P| ,

where P is the correlation matrix. Thus, this proves that |Σ| =
∏S

i=1 σ
2
i · |P|. In particular, if we

take the logarithm of this expression, we obtain equation [1] in the main text, which consists of

6



our decomposition of the community sensitivity to perturbations into contributions of individual

species and of species correlations.

In addition, we can prove that 0 ≤ |P| ≤ 1 and, therefore, species correlations can only

decrease community sensitivity. Without correlations (i.e., ρij = 0 ∀ i ̸= j), we have that P = I,

where I is the identity matrix. Because in this case P is a diagonal matrix, its determinant will

be given by the product of its diagonal elements: |P| = 1. This gives an upper bound for |P|

as correlations will always decrease this determinant. To obtain the lower bound, we note that

because P is positive semi-definite, its determinant is always nonnegative. Therefore, we have

proved that 0 ≤ |P| ≤ 1.
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Figure S1. Accuracy of covariance matrixΣ in describing the distribution of perturbed abun-
dances under cyclic or chaotic dynamics. a-c, Each panel shows the same element of S (data covari-
ance matrix, red line) and ofΣ (blue line) over time. The mean (± standard deviation) correlation be-
tween an element of S and an element ofΣ (correlation between red and blue lines) is: 0.87 ± 0.10 for
the 2-species predator-prey model (a, equation [2] in the main text), 0.91 ± 0.04 for the 3-species food
chain model (b, equation [3] in the main text), and 0.88 ± 0.03 for the 4-species competition model (c,
equation [4] in the main text).
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Figure S2. Cyclic and chaotic attractors in state space corresponding to each synthetic time
series generated by a population dynamics model. a-c, Each plot shows the 250 points ({N(t)},
t = 1, ..., 250) generated by numerically integrating the indicated model and then sampling equidistant
points. For the left column we did not add noise to the abundances, whereas for the right column we
add 10% of Gaussian noise as described in the Materials and Methods section in the main text. In our
analyses, we compute the analytical Jacobian matrix J from the attractors without noise (left) and in-
fer J with the S-map from the attractors with noise (right). Note that we only show the abundances of
species 1, 2, and 3 for the 4-species model.
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point corresponds to a state) of the synthetic time series generated by the indicated population dynam-
ics model. Note that the correlation matrix P is computed from the covariance matrixΣ, which is in
turn computed from the analytical Jacobian matrix J (see Materials and Methods in the main text).
The correlation between log |P| and max(ρ2ij) is: −0.99 for the 2-species predator-prey model (a,
equation [2] in the main text), −0.98 for the 3-species food chain model (b, equation [3] in the main
text), and −0.80 for the 4-species competition model (c, equation [4] in the main text).
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Figure S4. Log of determinant of correlation matrix (log |P|) decreases with the maximum
squared correlation (max(ρ2ij)) for random correlation matrices. Each panel shows log |P| as a
function of max(ρ2ij) for 500 randomly generated correlation matrices (each point denotes one matrix)
with a given dimension S. Each matrix P was sampled uniformly over the space of positive definite
correlation matrices (Joe, 2006). Note that, although the correlation between log |P| and max(ρ2ij) is
strong for all values of S, it becomes weaker as S increases.
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Figure S6. Contribution of species correlations (log |P|) shows the same qualitative pattern over
time for different values of k. a-c, Each plot shows log |P| over time computed using the analytical
Jacobian matrix J and a given value of the time step k (see Materials and Methods section in the main
text). Note that the plots with k = 3 for the 2-species predator-prey (a) and the 4-species competition
(c) models as well as the plot with k = 0.5 for the 3-species food chain model are identical to the
center panels in Figure 3 in the main text.
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(1) Compute covariance matrix of perturbed abundances: 

(2) Compute community sensitivity: 


(3) Compute contribution of individual species: 


(4) Compute contribution of species correlations: 
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Figure S7. Illustration of our procedure to infer the time-varying Jacobian matrix and perform
the community sensitivity decomposition. a (top), Time series (with 10% of observational noise) of
the 2-species predator-prey model (equation [2] in the main text). We highlight time t∗ as an example.
a (center), Weighted regression equation of the S-map, which is fitted separately for each species i and
time t∗. In this example, we have S = 2 and T = 250. For each time t∗, we obtain the Jacobian matrix
elements: jij = ∂Ni(t

∗+1)
∂Nj(t∗)

. On the right, we show how we weight each point when performing the
S-map for time t∗. a (bottom), Time series of inferred Jacobian matrix elements for the predator-prey
system. b (top), Steps to perform our community sensitivity decomposition. For the first step, we use
the inferred Jacobian matrix (J) and specify an initial covariance matrix (Σt) and a time step (k). In
this example, we use Σt as the identity matrix and k = 3. b (bottom), Time series of the contribution
of species correlations (log |P|) for the predator-prey system. Note that this plot is exactly the same as
the bottom panel in Figure 4a in the main text.
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Figure S8. State-dependent impact of species correlated responses can be inferred directly from
time series with a high amount of noise in species abundances. This figure is similar to Figure 4 in
the main text, but here we performed the S-map to infer the Jacobian matrix J using time series with
20% instead of 10% of observational noise (see Materials and Methods section in the main text). Note
that the top center panels in a, b, and c (i.e., log |P| computed analytically from model) are identical to
the corresponding panels in Figure 4.
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Figure S9. State-dependent impact of species correlated responses can be inferred directly from
time series with noise in Σt and k. This figure is similar to Figure 4 in the main text, but here we
added noise to the covariance matrix of perturbations at time t (Σt) and to the time step k before using
Σt and k to compute the covariance matrix of perturbations at time t + k (Σ, see Materials and Meth-
ods section in the main text) with the S-map. Specifically, for each time series point (N(t)), we added
20% of Gaussian noise to the diagonal elements ofΣt (i.e., perturbation variances) and to k and then
used the noisy Σt and k to compute Σ, which was in turn used to compute log |P|. Note that we only
added noise when computingΣ with the S-map and the top center panels in a, b, and c (i.e., log |P|
computed analytically from model) are identical to the corresponding panels in Figure 4. Also note
that there is also 10% of observational noise in species abundances in addition to noise inΣt and k.
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Coherent predator-prey cycles (day 40 to 120)

Non-coherent predator-prey cycles (day 230 to 310)

Figure S10. Impact of species correlated responses depends on prey abundance only under
coherent predator-prey cycles. This figure is similar to Figure 5a in the main text (i.e., 2-species
predator-prey data from Blasius et al. (2020)), but here we use one window of time (day 40 to 120)
showing coherent predator-prey cycles (a) and one window of time (day 230 to 310) showing non-
coherent cycles (b). Under coherent cycles (a), prey abundance is higher when the contribution of
species correlations is high than when it is low (two sample t-test: t(20.98) = 6.33, p < 0.0001), simi-
larly to Figure 5a. Under non-coherent cycles (b), we find no relationship between prey abundance and
the contribution of species correlations (two sample t-test: t(35.70) = 0.25, p = 0.8).

18



0.0

0.1

0.2

0.3

0.2 0.3 0.4 0.5
Competitor 4 (N4)

C
om

pe
tit

or
 3

 (N
3)

−10

−8

−6

Contribution
of species
correlations

0

30

60

90

120

10 20 30 40 50
Producer (N1)

Se
co

nd
ar

y 
co

ns
um

er
 (N

3)

−1.5
−1.0
−0.5

Contribution
of species
correlations

20

40

60

80

30 40 50 60 70
Predator (N1)

Pr
ey

 (N
2)

−0.8
−0.6
−0.4
−0.2

Contribution
of species
correlations

1.5

1.8

2.1

2.4

1.0 1.2 1.4 1.6
Predator (N2)

Pr
ey

 (N
1)

−0.3
−0.2
−0.1

Contribution
of species
correlations

a b

c d

2-species predator-prey

(type I functional response)

2-species predator-prey

(type III functional response)

3-species food chain 4-species competition

Figure S11. Contribution of species correlations (log |P|) across state space under four different
population dynamics models. a-d, Each plot shows the attractor in state space corresponding to a
given synthetic time series generated by the indicated population dynamics model. Each abundance
state N(t) (i.e., each point) is colored according to log |P| computed analytically from the model (see
Materials and Methods in the main text). Note that panel a depicts a Lotka-Volterra predator-prey
model (not shown in the main text) generated using the following parameters in equation [4] in the
main text: S = 2, r1 = 0.2, r2 = −0.2, a11 = 0, a12 = −0.15, a21 = 0.1, and a22 = 0. Importantly,
note that for both 2-species predator-prey models (a and b), log |P| is higher when the prey abundance
is higher.
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Figure S12. Impact of species correlated responses depends on prey abundance for two experi-
mental communities using time step k = 3 instead of k = 1. This figure is similar to Figure 5 in
the main text, but here we use k = 3 instead of k = 1 to compute the covariance matrixΣ, which is
in turn used to compute the contribution of species correlations (log |P|). Note that results are quali-
tatively the same as in Figure 5. For the 2-species community (a), prey abundance is higher when the
contribution of species correlations is high than when it is low (two sample t-test: t(130.52) = 9.91,
p < 0.0001; data from Blasius et al. (2020)). For the 3-species community, the abundance of the
preferred prey is lower when the contribution of species correlations is high than when it is low (two
sample t-test: t(10.12) = −3.14, p = 0.01; data from Becks et al. (2005)).
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