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Short-term forecasts of nonlinear dynamics are important for risk-assessment
studies and to inform sustainable decision-making for physical, biological and
financial problems, among others. Generally, the accuracy of short-term fore-
casts depends upon two main factors: the capacity of learning algorithms to
generalize well on unseen data and the intrinsic predictability of the
dynamics. While generalization skills of learning algorithms can be assessed
with well-established methods, estimating the predictability of the underlying
nonlinear generating process from empirical time series remains a big chal-
lenge. Here, we show that, in changing environments, the predictability of
nonlinear dynamics can be associated with the time-varying stability of the
system with respect to smooth changes in model parameters, i.e. its local
structural stability. Using synthetic data, we demonstrate that forecasts from
locally structurally unstable states in smoothly changing environments can
produce significantly large prediction errors, and we provide a systematic
methodology to identify these states from data. Finally, we illustrate the
practical applicability of our results using an empirical dataset. Overall,
this study provides a framework to associate an uncertainty level with
short-term forecasts made in smoothly changing environments.
1. Introduction
Predicting the behaviour of natural and physical systems has been one of the
great challenges of scientific inquiry [1–3]. In the past, the main limitation for
the short-term predictability of most natural systems was the lack of an exact
knowledge of their governing equations and the uncertainty associated with
their parameters [1,4]. Then, in the late 1970s and early 1980s, the pioneering
work of Takens [5] showed that important properties of nonlinear systems
could be reconstructed solely based on empirical observations, allowing sub-
sequent development of novel non-parametric methods for time-series
forecasting [2,6,7]. Indeed, our capacity to build predictive non-parametric
models has advanced substantially thanks to a combination of multivariate
generalizations of Takens’s embedding theorem [8,9] and deep-learning algor-
ithms [4,10,11]. However, the possibility to predict nonlinear dynamics in
empirical settings has remained fundamentally limited by the fact that, in chan-
ging environments, model parameters are in constant change (e.g. species
competition within biological communities increases in periods of food scarcity
[12], interest rates are affected by bank policies [13,14], among others) and these
changes can have significant effects on the system’s dynamics [15].

Unfortunately, the effects of environmental variability on a system’s trajectory
cannot be easily predicted solely based on past observations. This is simply because
predictive models built on properties learned from already observed data cannot
generalize well on new data generated by unseen processes. Put differently, mini-
mizing a cost function over training data generated by a given model does not
ensure that the cost is also minimized over data generated by a different model
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[16]. This is a fundamental limitation arising in the applicability
of modern statistical learning theories for the predictability of
nonlinear dynamics in changing environments—where model
parameters are changing frequently.

A possible way to estimate the effects of environmental
variability on a system’s dynamics is to use non-parametric
scenario exploration [17]: an approach developed to assess
the effect of a small change in a physical driver on empirically
reconstructed dynamical systems. However, in this approach,
the environmental drivers need to be explicitly included in
the reconstructed dynamics and, therefore, its applicability
may be limited when the drivers of the dynamics are only
partially or not at all observed.

To overcome these limitations and to better address the
real-world challenge of characterizing predictability in chan-
ging environments here we propose a non-parametric
approach that focuses on estimating the local structural stab-
ility of the underlying data-generating process. This estimate
is then used as an indicator of its predictability at any given
point in time—the predictability associated with a particular
location or ‘state’ in phase space. The local structural stability
of a given dynamical system can be defined as the time-vary-
ing stability of the phase portrait under smooth changes of
the vector field [18]. That is, the local structural stability of
a dynamical system can be interpreted as the resistance to
change its trajectory after a smooth change in model par-
ameters. To test these ideas, we combine non-parametric
methods and machine learning algorithms to detect time
points where a system is more predictable. The remainder
of this work is organized as follows. We first present the
theoretical background; next we test our theoretical frame-
work on synthetic time-series data; and then we validate
our theory on an empirical biological time series.
2. Background
To illustrate our approach, we consider nonlinear time series
generated by some unknown dynamical system

_x ¼ F (x, v), (2:1)

where F [ C1 is a nonlinear vector field (i.e. nonlinear dyna-
mical model), x [ Rd is the state vector and ω is a vector of
environment-dependent parameters (e.g. interaction strength
between species in population dynamics models, interest
rates in financial models). We assumed that environmental
changes affect the model dynamics through smooth pertur-
bations of the components of ω, but we did not choose a
particular parametric form for F . In this work, our goal is
to estimate the predictability of equation (2.1) from empirical
observations and without information on environmental
variability, given that in many empirical cases we cannot con-
trol or measure all environmental parameters.

In nonlinear systems under changing environments, the
accuracy of a forecast of the state variable x depends both
on the power of the learning algorithm (e.g. artificial neural
network, local regression) used for prediction and on how
predictable the system is. If a perfect learning algorithm
were available, the predictability of equation (2.1) would
only depend on how changes in F or its parameters ω (due
to environmental changes) affect the value of the future
state variables x. In this case, the predictability of equation
(2.1) would depend on the structural stability of F , that is,
the stability of this dynamical system against perturbations
of its vector field or its parameters. Note that we are extend-
ing the classic definition of structural stability [19] (which
looks at the capacity to remain in a given global qualitative
state) to a local quantitative property [18,20]. Moreover,
because we assumed F to be nonlinear, the extent to which
perturbations to F result in changes of x also depends
upon the state of the system (figure 1a). That is, the resistance
of a nonlinear dynamical system to changes in its trajectory is
state dependent. In the remainder of this work, we use the
term local structural stability [18] to refer to structural stab-
ility that is state dependent—that can vary with the specific
location in phase space.

Following the argument above, we investigate the associ-
ation between local structural stability and the predictability
of nonlinear time series in smoothly changing environments.1

Estimating the local structural stability of nonlinear systems is
in general extremely challenging. Importantly, previous work
has found that the inverse of the volume contraction rate
(VCR) of the vector field at a given point in the state space
is a proxy for its local structural stability [18]. Here, we go
a step further and propose that the VCR is also an inverse
measure of local predictability in changing environments.
The VCR (V) of a continuous dynamical system is the
divergence of the vector field F [19],

V ; r � F ¼ Tr(J ), (2:2)

where J is the Jacobian matrix of F and Tr(J ) is the trace of
this matrix. For example, in a system with three state vari-
ables x = [x, y, z] and a vector field with three components
(i.e. three differential equations) we have

V ¼ @F x

@x
þ @F y

@y
þ @F z

@z
: (2:3)

Note that, generally, in nonlinear systems with interacting
terms V:V(x) (i.e. the VCR is state dependent). Therefore,
unless the equilibrium dynamics is a stable fixed point, the
structural stability of the system changes in time.2 Below,
we provide a heuristic argument for using the VCR as an
inverse measure of local predictability of nonlinear time
series under changing environments.

Let S be the state space of equation (2.1), whereas we call ω
and v̂ the unperturbed and perturbed parameters of equation
(2.1), respectively. For the purposes of working with empirical
data, we can assume that, for any x [ S and small perturbations
to the parameters (i.e. for d(v, v̂) � 0 under somemetric d such
as Euclidean distance), Tr(J (x, v)) � Tr(Ĵ (x, v̂)). That is, for
small parameter perturbations, the perturbed and unperturbed
dynamics have similar VCRs. Note that this is a very reasonable
assumption for continuous and differentiable functions, and it is
applicable tomanyscenarios of environmental change in empiri-
cal data [19]. Yet, it is important to recall that this argument is
only valid under the assumption of smooth parameter pertur-
bations (i.e. smooth changes in the environmental conditions)
anddoes not apply to strong qualitative changes in thedynamics
(e.g. invasion or extinction of a species in an ecosystem).

In a nonlinear dynamical system, the VCR provides a
measure of how the volume of the state space changes under
the flow of the vector field. Regions in the state space with
small VCR correspond to regions under which volumes in
the state space do not increase and, therefore, trajectories do
not diverge. Within these regions of the state space, two
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Figure 1. Volume contraction rate (VCR) and local structural stability in changing environments. The time series in (a) and (c) are generated from a numerical
integration of a five-dimensional chaotic dynamical system (figure S1). The panels show that the same parameter perturbation occurring at two different points
along the model’s trajectories (i.e. t = 2000 and t = 3400) can have completely different effects on the dynamics. This effect can be measured as the deviation e
between perturbed (red dotted line) and unperturbed (green dotted line) trajectories. This result is analysed further in (b). The two figures show the PDF and CDF
for the percentage difference in the deviation of trajectories (after perturbing the dynamics) at points with small (e small) and large (e large) VCRs (the perturbation is
the same at the two points). The red line in the left panel indicates the median of the distribution. The blue line in the right panel corresponds to the probability
below which e small,e large. In (d), we analyse the tail of the distribution. The y-axis is the complement of the cumulative distribution function of the ratio between
the two deviations. The panel shows that the probability that a small perturbation leads to a large effect (i.e. large deviation between perturbed and unperturbed
trajectories) is much larger at points with large VCRs (top black line) than at points with small VCRs (bottom blue line). This result is validated on other chaotic
dynamical systems (see electronic supplementary material, figure S1). Overall, the figure shows that a system’s response to a perturbation to the parameters depends
on the value of the VCR at the time at which the perturbation occurs. (Online version in colour.)
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nearby models (i.e. the model with original parameters and
the model with perturbed parameters) have, by the assump-
tion above, similarly low VCRs. Therefore, going from one
model (unperturbed) to the other (perturbed), their respective
trajectories do not diverge. By contrast, the effects of pertur-
bations occurring at states with a large VCR are, on average,
magnified by the flow. This observation allows us to link the
VCR to the predictability of the dynamics. That is, because,
without prior information on perturbations, a learning algor-
ithm can only predict the unperturbed trajectory, prediction
errors will be small when perturbed and unperturbed trajec-
tories do not diverge (i.e. at states with small VCR). On the
other hand, when the divergence of the trajectories is magni-
fied by the flow (i.e. when the VCR is large) prediction
errors will be larger. As such, this suggests that the VCR can
be used to estimate the local predictability of nonlinear time
series under changing environments.

Note that the VCR at a given state of a nonlinear dynamical
system is the sum of the local Lyapunov exponents (i.e. finite-
time Lyapunov exponents computed with the given state as
initial condition) [21,22]. Thus, differently from the largest Lya-
punov exponent, the VCR contains information about the
stretching of nearby trajectories along all the stable and
unstable directions. That is to say, the VCR is a linear function
of the whole Lyapunov spectrum that captures how volumes in
a d-dimensional space expand or contract. This implies that, for
each point in time, the VCR provides an average rate of diver-
gence or convergence of nearby trajectories, providing a robust
estimation of local structural stability and, therefore, of predict-
ability in smoothly changing environments. It is important to
note that, because there is always uncertainty associated with
the magnitude and direction of perturbations, any predictabil-
ity metric such as the VCR can only measure the probability of
committing small or large prediction errors. Because the ulti-
mate goal of our approach is to analyse empirical data, we
would like to highlight that the estimation of the VCR only
requires knowing the diagonal elements of the Jacobian
matrix of the dynamics—a quantity that can be efficiently
estimated from multivariate time series with available
non-parametric methods (see discussion below and electronic
supplementary material, figure S5, for examples of the
inference of the VCR from noisy nonlinear time series [12,23]).

3. Prediction of synthetic data
To validate our approach, we provide a numerical illustration
using synthetic data. Specifically, we show that the VCR can
be used to estimate the local structural stability of the
dynamics. Then, we show that structural stability implies pre-
dictability. First, to show that the VCR is a valid estimator of
local structural stability (i.e. the stability of a system’s trajec-
tory in response to smooth parameter perturbations), we
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compare the effect of the same parameter perturbation at
points on the attractor with a small VCR versus points with
a large VCR. For this purpose, we integrate the dynamics
of a five-dimensional chaotic dynamical system (see elec-
tronic supplementary material, figure S1) and compute the
VCR along the trajectory using the analytical Jacobian
matrix J . Then, we sample one random point with a large
VCR and one random point with a small VCR from the sys-
tem’s trajectory. We took the small VCR within the lower
15th percentile of the VCR distribution, whereas the large
VCR is within the upper 15th percentile of the same distri-
bution. Then, we perturb a random number of parameters
and integrate the dynamics again with the new perturbed
parameters using the two sampled points on the attractor
as initial conditions.

Parameter perturbations are of the form

v̂i ¼ vi þN 0,
vi

U(1, h)
� �

, (3:1)

where ωi∈ω, N and U are the normal and uniform
distributions, respectively. That is, the perturbation to the
parameter is a random number sampled from a Gaussian
distribution with zero mean and standard deviation pro-
portional to the value of the parameter itself. By changing
the standard deviation of the perturbation (i.e. by changing
the value of η), we can change the overall level of pertur-
bation to the system. In order to preserve the spirit of a
non-parametric framework (where in principle there is no
knowledge about the governing equations and their par-
ameters), at every realization we also randomly sample
which and how many parameters to perturb. Yet, under-
standing the effects of individual parameters can be a
fruitful research area that future work can explore.

After the integration of the new dynamics, we measured the
root mean square distance (RMSD) between perturbed and
unperturbed trajectories at the small VCR state (esmallV ) and at
the large VCR state (elargeV ; see figure 1a,c for an illustrative
example). We repeat this same numerical experiment 105 times.
In order to estimate the effect of the sameparameter perturbation
on two different system states we analyse the distribution of two
statistics. First, we compute the percentage difference between
RMSD after perturbations at points with small and large VCR,
i.e. X ¼ (esmallV � elargeV )=(esmallV þ elargeV ). We show in figure
1b the kernel density estimation of the probability density func-
tion (PDF) and cumulative distribution function (CDF) of this
statistic. The PDF shows that the mass of the distribution is
skewed towards negative values (〈X〉∼−0.12), indicating that,
on average, esmallV , elargeV . Similarly, the CDF shows that the
probability that this inequality holds is clearly greater than 50%
(i.e. P(esmallV , elargeV ) � 60%).

Becausemean values can bemisleading,we also analyse the
severity of the extreme events (i.e. the tail risk) and compute the
statistics Y ¼ (esmallV )=(elargeV ) and Z ¼ (elargeV )=(esmallV ). We
then plot the complement of the empirical cumulative distri-
bution function for the random variables Y and Z. For a given
ratio r of RMSDs, the condition Pr(Z > r) > Pr(Y > r) implies
that points on the attractorwith smallVCRaremore structurally
stable than points with large VCR under the exact same par-
ameter perturbation. Figure 1c shows that the complements of
the two cumulative distribution functions, i.e. Pr(Z > r) and
Pr(Y > r), are substantially different, with the former being
much larger than the latter. This reveals that the impact of
smooth perturbations occurring at points with large VCR is
much larger than the impact of perturbations taking place at
states with low VCR. To further validate this result, we repeat
the same numerical experiment with three additional chaotic
dynamical systems (see electronic supplementary material,
figure S1). The results are shown in electronic supplementary
material, figure S1, and are consistent with our theoretical
expectations. These examples provide support to the hypothesis
that the VCR is a good estimator of local structural stability in
nonlinear dynamical systems [18].

It is worth noting that similar results can be obtained using
the largest local Lyapunov exponent as ameasure of local struc-
tural stability (electronic supplementarymaterial, figure S5 and
figure S2). However, as shown in electronic supplementary
material, figure S2, which was generated mirroring the simu-
lation done to generate figure 1b, the shift of the mass of the
PDF and CDF towards negative values is more significant
when predictability is estimated using the VCR. While Lyapu-
nov exponents are not considered a measure of predictability
[24], this result is not surprising as a local perturbation in the
parameters should induce changes in the trajectories, which
will then diverge at a rate measured by the Lyapunov
exponents. Yet, as discussed above, the VCR provides a more
groundedmeasure of this divergence because it is ametric con-
structed by weighting stable and unstable manifolds equally.
Moreover, from a practical and computational point of view,
the VCR is a more reliable metric to estimate from empirical
data than the largest Lyapunov exponent. That is, the compu-
tation of the VCR only requires the estimation of the diagonal
elements of the Jacobian matrix (d parameters), while the
Lyapunov exponents require thewholematrix (d2 parameters),
making the latter more prone to errors [7,25].

Having corroborated the validityof theVCRas ameasure of
local structural stability, we now show that, in changing
environments, predictions from structurally stable states are
less error prone. To illustrate the relationship between local
structural stability and predictability, we repeat the same
numerical experiment outlined above. However, differently
from above, rather than integrating the dynamics, here we fore-
cast the trajectories after each perturbation using a long short-
term memory (LSTM) artificial neural network [26,27]. Then,
we compute the root mean square error (RMSE), which is
widely adopted as a measure of forecasting skill [10,28],
between the perturbed and predicted trajectories. Note that
the RMSD and the RMSE are mathematically the same, but
conceptually different. We used this terminology to distinguish
the two types of experiments: divergence (RMSD) and forecast-
ing (RMSE). We focus on short-term predictions (i.e. small
forecast horizon) because long-term predictions of nonlinear
systems are known to be very unreliable in empirical data
even in the absence of parameter perturbations. This analysis
is repeated for different levels of perturbations in model
parameters (see appendix A for details).

Figure 2a shows the distribution of RMSE of predictions at
small and large VCRs as a function of the forecast horizon
with a given level of perturbation (i.e. η = 6 in equation (3.1);
results for a larger level of perturbation are reported in electronic
supplementary material, figure S3). This figure illustrates that
predictions at states with a small VCR are more accurate than
predictions at states with a large VCR, confirming that the
VCR is an effective estimator of the uncertainty in short-term
predictions of a dynamical system. These results further confirm
the link between local structural stability and local



small VCR
large VCR

R
M

SE
C

D
F

0

–1.0 –0.5 0 0.5 1.0 0

10–2

10–1

1

–1.0

0

–0.5

0.5

5 10

1-
C

D
F

ratio of RMSE

15 20 25

'

smallv
+ '

largev

'

smallv 
– '

largev

' sm
al

l v
+

 

' la
rg

e v

' sm
al

l v
 – 

' la
rg

e v

1-CDF '

largev

'

smallv 

1-CDF '

smallv

'

largev 

0.25

0.50

0.75

1.00
6 step ahead
12 step ahead
18 step ahead

0.2

0.4

0.6

0.8

1.0

18 20161412
forecasting horizon

10864 18 20161412
forecasting horizon

10864

(b)(a)

(c) (d )

Figure 2. Theoretical validation of the volume contraction rate (VCR) as an estimator of predictability in changing environments. (a) The distribution (boxplots) of
RMSE in the test set at different forecasting horizons. Predictions are made with a long short-term memory (LSTM) artificial neural network after perturbations at
points with small and large VCRs (left and right boxplots, respectively). Perturbations are performed as in the analysis presented in figure 1b, but here we measure
the deviations between perturbed and predicted trajectories (i.e. RMSE) instead of deviations between perturbed and unperturbed trajectories (i.e. RMSD). Points at
small (large) VCR are sampled from the lower (upper) 15th percentile of the trace of the Jacobian matrix, which is computed numerically at each point on the
attractor. The means of the two distributions (i.e. small and large VCRs) are different and the robustness of this result to various sample sizes is discussed in
electronic supplementary material, figures S2 and S4. (b) The same distribution shown in figure 1b but as boxplots, which are a function of the forecasting horizon.
This panel, together with the CDF in (c), shows that the mass of the distribution is moved towards negative values, i.e. prediction errors after perturbations at small
VCRs are on average smaller than prediction errors after perturbation at large VCRs. The blue, orange and cyan lines show the probability mass corresponding to
negative values in the percentage difference as a function of forecasting horizon. (d ) As expected from figure 1d, the same parameter perturbation has a much
greater impact on the predictability of points with large VCRs (top black line) than points with small VCRs (bottom blue line). Overall, the figure shows that the VCR
is a consistent measure of predictability in smoothly changing environments. (Online version in colour.)
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predictability. The difference in mean RMSE between small and
large VCR is statistically significant for all forecast horizons, and
this result is robust to the choice of the sample size (see electronic
supplementarymaterial, figures S2 and S4). Figure 2b,c is equiv-
alent to figure 1b. The two panels show that, in line with our
theoretical expectation, the mass of the distribution is moved
towards negative values, i.e. prediction errors after pertur-
bations at small VCR are on average smaller than prediction
errors after perturbations at large VCR.

Similarly to the analysis shown in figure 1c, we also estimate
the effect on predictability of the sameparameter perturbation at
differentVCR states. Figure 2d shows that the complement of the
cumulative distribution function of the ratio of the RMSEs fol-
lows our theoretical expectations (figure 1c). That is, in the
presence of smooth perturbations to the model parameters (i.e.
in smoothly changing environments), the probability of large
prediction errors is much larger when predictions are made
from states with a large VCR.
4. Prediction of empirical data
The theoretical framework and results above support the
hypothesis that the VCR can be used to estimate the predict-
ability of nonlinear time series in smoothly changing
environments. We now turn to demonstrate the practical
applicability of our approach on empirical data. Specifically,
we analyse a biological time series of a rocky intertidal com-
munity that exhibits dynamics at the edge of chaos [29]. The
community consists of three species (mussels, algae and bar-
nacles) that compete for space on bare rock. Data were
collected daily for over 20 years in New Zealand [29].

Following the analysis carried out on synthetic data, we
compare the RMSEs after predictions at points with small and
large VCRs (see appendix A for further details). Differently
from the numerical simulations, the Jacobian matrices at each
time step are not available when dealing with empirical data.
Therefore, to compute the empirical VCRs non-parametrically,
we reconstruct the Jacobian coefficients from the observed
time series using the regularized S-map [23], which we also
use for forecasting. The regularized S-map is a locally weighted
regularized state-space regressionmodel that has been shown to
be a robust estimator of Jacobian coefficients from noisy time-
series data [7,12,23,25]. See electronic supplementary material,
figure S3 for further details on the S-map. Electronic sup-
plementary material, figure S5 shows an illustrative example
of inference of VCR from synthetic data and electronic sup-
plementary material, figure S6 shows a comparison of the
forecasting skill of the regularized S-map and LSTM. To avoid
any cross-contamination between training and test data,
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rather than computing the VCR over the whole time series and
then sampling points beyond which to forecast (as in the syn-
thetic data analysis section), we compute the VCR
sequentially using only past data and then we perform out-of-
sample forecasts (see appendix A for further details).

Figure 3a confirms the theoretical results shown in figure 2.
In particular, the figure shows that predictions at states (i.e.
time points) with a small VCR have, on average, a smaller
RMSE than predictions at states with a large VCR. This differ-
ence between small and large VCR is statistically significant
for all forecast horizons (see electronic supplementary
material, table S7). Hence, in line with the results found
using synthetic data, the VCR computed empirically from
the time series can be used to estimate the local predictability
of the data. Note that predictions were made up to five months
ahead with a threshold in the VCR set at the 15th percentile.
The robustness of the results at different percentiles is shown
in electronic supplementary material, figure S9.
To further test the validity of our analysis, we also test for
the statistical significance of our results by comparing the
observed RMSEs in the lower percentile of the VCR with the
distribution of possible mean RMSEs that one would have
obtained by using random criteria of predictability. This distri-
bution is computed by randomly sampling multiple subsets of
RMSEs, regardless of the VCR at the time of prediction, and
then computing the mean of each subset (see appendix A
for a more detailed explanation of the test). We found that
the VCR is a statistically significant measure of predictability
(figure 3b) as long as the separation criterion between small
and large VCR is within the 35% of the inferred trace of the
Jacobian matrix (see electronic supplementary material,
figure S8). Figure 3c shows the kernel density estimation of
the distribution of the RMSE in the test set in the lower and
upper percentiles of the VCR. The figure clearly illustrates
that the two distributions have not only different means but
also different shapes. Specifically, even though the distribution
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of errors at large VCRs (red region) has a peak at low RMSE, it
is clearly more skewed towards larger errors than the distri-
bution of errors at small VCRs (cyan region). This result
implies that the probability of large prediction errors is sub-
stantially higher when predictions are made at states (i.e.
time points) with large VCR. The overlap of the two distri-
butions also implies that other factors, such as noise in the
empirical data, most likely affect the local predictability of a
time series. Our results are consistent with theoretical expec-
tations (figures 1, 2 and electronic supplementary material,
figure S1) and are robust to the choice of the threshold in the
VCR (see the distributions in electronic supplementary
material, figure S9)

It is important to notice that, unlike the synthetic example,
the biological example is not a closed system but is part of a
broader environmental context. Thus, an interesting question
to ask is how the predictability of this community might be
related to relevant environmental variables that are exogenous
to the system. To answer this question, we investigate the
causal relationship between the VCR with temperature and
mean wave height using a non-parametric causality test
known as convergent cross mapping [31] (CCM; see
appendix A for further details on CCM). It is known that temp-
erature and mean wave height are two key environmental
drivers of rocky intertidal communities [18,29,32,33].
Figure 3d reveals that sea temperature has a causal influence
on the VCR and, therefore, on predictability. However, there is
no significant causal relationship between mean wave height
and VCR. This result is interesting because it illustrates that
environmental variables (e.g.meanwave height) can play a cru-
cial role in the dynamics (e.g. regulate themortality rate [32]) but
have no effect on the predictability of the community dynamics.
The statistical significance of the causal links is assessed using
surrogate time series (shaded area in figure 3d; see appendixA).
5. Discussion
Forecasting with nonlinear time series is a central challenge in
science and engineering [1–3]. The issue is particularly hard
to address when true dynamics are unknown and parameters
are likely to change in response to environmental variations.
In this context, it is of practical relevance to know when pre-
dictions can be trusted the most. To address this issue, here
we have provided theoretical arguments, as well as synthetic
and empirical evidence in support of the hypothesis that the
VCR, a local property of the deterministic skeleton of the
dynamics, provides reliable information about the local pre-
dictability of nonlinear dynamical systems in smoothly
changing environments. Interestingly, analysing synthetic
and empirical data, we have found that the distributions of
prediction errors at states (i.e. time points) with small and
large VCR differ considerably. In particular, the probability
of very large prediction errors with respect to the mean is sig-
nificantly higher when predictions are made at states with a
large VCR. We believe that this is an important finding that
can have practical implications and that requires further
theoretical investigation. For example, with sufficient empiri-
cal data, it is in principle possible to compare the current
VCR with historical values in order to check if the current
VCR is large compared with past values. If this is true,
there is a greater risk of making inaccurate forecasts at the
current system state.
Despite the potential applicability of the VCR, it is also
important to discuss the limitations of this approach. One evi-
dent pitfall is that, theoretically, there could be cases in which
the VCR stays constant throughout the time. A clear example
is the Lorenz system: a chaotic dynamical system whose pre-
dictability is notoriously state dependent [34] but, at the same
time, has a constant VCR. Yet, while theoretically possible,
empirical systems with nonlinear dynamics but constant
VCR are probably the exception rather than the rule. For
example, a simple process noise (i.e. a noise typically pro-
portional to the square root of the state variable) would
generate state-dependent VCRs. A second limitation is the
(in)accuracy of the reconstruction of the VCR from empirical
data. In the example provided in this article, we have detailed
information about the system under investigation. Specifi-
cally, all the relevant variables were observed, allowing us
to use a fully multivariate embedding from which we know
we can reconstruct the VCR accurately using the regularized
S-map [12,23]. In cases where not all variables are collected
from experiments or observational studies, the dynamics
can still be reconstructed from the available observations
using Takens’s embedding theorem [5]. However, the results
will be sensitive to the details of the attractor reconstruction
(e.g. the selection of the optimal time lag and embedding
dimension). Because the trace of the Jacobian matrix cannot
be associated with the VCR if the reconstructed attractor is
not embedded in the correct dimensional space, particular
care needs to be placed on the application of the methods
from reconstructed dynamics. Overall, we have provided a
framework to estimate, non-parametrically, the local predict-
ability of empirical nonlinear time series under smooth
parameter changes. We believe that this approach and its
potential extensions can have important practical appli-
cations in management and risk-assessment studies.

Code availability. The code to reproduce the figures is available on
GitHub at https://github.com/MITEcology/JRSI-Cenci-Medeiros-
Sugihara-Saavedra-2019.git. The folder also includes a code to esti-
mate the VCR from a multivariate time series.
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Endnotes
1Note that our question is different from the problem of stability
addressed with sensitivity analysis because, as discussed above, we
assume limited information on environmental factors. Also, the
problem we are addressing is different from the problem of estimat-
ing dynamical stability in chaotic dynamical systems. This other
problem focuses on the issue of how perturbations of state variables
affect the model trajectories, and it is typically addressed by the com-
putation of Lyapunov exponents. Our work, on the other hand,
focuses on the issue of how perturbations of model parameters
affect the model’s future trajectories.
2Note that the VCR also changes during the transient state, regardless
of the nature of the fixed point. However, here we only focus on
long-term dynamics.
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3We present this threshold as an illustrative example as in [18] but it
has already been shown with synthetic data that the results are robust
to the specific choice of the threshold. Nonetheless, for the empirical
data we performed an extensive analysis of the robustness to the
choice of the threshold.
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Appendix A

A.1. Analysis of synthetic data
To show that the VCR is a valid measure of predictability in
smoothly changing environments, we ran the following
analysis. We considered a five-species chaotic population
dynamics model as in figure 1a (see electronic supplementary
material, figure S1 for details on the model). We integrated
the dynamics over 105 time points and sampled equally
spaced points along the trajectories (one every 150 points).
Then, we numerically computed the VCR along the attractor
using equation (2.2), and we sampled a pair of points in the
lower and upper 15th percentiles of this measure.3 Using
these points, we perturbed a random number of parameters
with Gaussian random variables at zero mean and with stan-
dard deviation proportional to the value of the parameters
themselves (see electronic supplementary material, figure
S1). Then, we integrated again the dynamics with the new
parameters, taking as the initial condition the two perturbed
points (i.e. lower and upper percentiles). Note that we
applied the very same perturbation to each pair of points.
This provided two unperturbed trajectories (i.e. before the
two perturbation points) over which we trained an LSTM
artificial neural network [26,27] and we then made forecasts
over the two perturbed trajectories. Training was performed
over the 500 data points preceding the perturbation time,
i.e. ttraining∈ [tp−500,…, tp], where tp is the time of pertur-
bation. Forecasts were performed up to 20 time steps in the
future (i.e. we were interested in short-term forecasts given
that long-term predictability of chaotic systems in changing
environments is practically unfeasible). Finally, we computed
the RMSE at different forecast horizons in the two test sets,
i.e. one after the perturbation at the structurally stable
points and the second one after the perturbation at the
structurally unstable points. We repeated these numerical
experiments 500 times at different levels of perturbations.
Results of this analysis are shown in figure 2.

A.2. Analysis of empirical data
We used a multivariate time series of species abundances
collected from a 22-year-long observational study of a
marine intertidal community from New Zealand. The data
can be downloaded from [30]. The community is composed
of three species (mussels, algae and barnacles) competing for
space on bare rock. Because the three species compete for
space, the overall system has four dimensions. It has already
been shown that the time series exhibits dynamics at the
edge of chaos [30], making it a perfect candidate for our analy-
sis. The time series, as downloaded from [30], is already
pre-processed (see [29] for further details on the system).

To test the validity of the VCR as an inverse measure of
predictability we run the following analysis: first, we trained
the S-map on 150 data points. Then, we computed the VCR
from the estimated Jacobians (coefficients of the S-map; see
electronic supplementary material and [12]). At this point,
we made predictions up to five months ahead and we saved
(i) the VCR before the prediction and (ii) the RMSE of the fore-
cast. Then, we took a new point from the data, fitted the new
Jacobian coefficients, computed the new VCR, predicted again
and computed the new RMSE. We repeated this numerical
experiment up to the final point of the time series. Finally,
we plotted the RMSEs as a function of the forecasting horizon
for all those points below and above a certain threshold of the
VCR. All the forecasts are completely out-of-sample and the
VCR is always computed using training data only. The
threshold was fixed at the first 15th percentile in the figure
shown in the main text. The results at different thresholds
are shown in electronic supplementary material, figure S9.

A.3. Causality test
To test for the existence of a causal link between variables
in nonlinear dynamical systems, we used CCM [31], a non-
parametric test for causality developed within an empirical
dynamic modelling (EDM) framework. Given two variables
X and Y, CCM uses the results from Takens’s theorem to
reconstruct two versions of the same manifold, one with
embedding of X and one with embedding of Y. Then, vari-
able X is said to be a causal driver of variable Y if
information of X is contained in the manifold of Y, i.e. Y
cross maps X. See [31] for a more detailed presentation of
the causality test. To ensure the statistical significance of the
causal links with CCM, two conditions need to be satisfied:
(i) convergence towards higher cross-mapping skills as the
number of data points increases and (ii) CCM skills need to
be higher than the one we would obtain with a surrogate
version of the time series. Because temperature has a strong
seasonal pattern, we used a null model that takes into account
seasonality in the data. Specifically, we used the function make_
surrogate_season in the rEDM package in R. Note that before per-
forming the causality test, for an accurate reconstruction of the
VCR, we have used an ensemble method to compute the
Jacobian coefficients [25]; see electronic supplementarymaterial.
In electronic supplementary material, figure S10, we show that
CCM provides results that meet biological expectations, i.e. the
VCR has no causal effect on environmental variables in the bio-
logical time series. That is, the VCR does not influence either sea
temperature or mean wave height, confirming what would be
naturally expected.

A.4. Statistical tests
As a first test for the validity of the VCR as a measure of pre-
dictability, we performed a t-test on the two distributions (i.e.
errors at small and large VCR). Results are shown in elec-
tronic supplementary material, table S7. The p-value of the
test is significantly smaller than 5% for all cases. Because
the sample size of the predictions in the empirical dataset is
relatively small, we ran a second analysis to test if results
are statistically significant. First, we set a threshold on the
VCR (e.g. 15th percentile as in the main text). Then, we com-
puted the mean RMSE in the test set for all the predictions
made at points below this threshold (cyan line in figure 3b).
Then, we randomly sampled a subset of the predictions in
the test set regardless of the value of the VCR at the time
of prediction, and we also computed the mean RMSE in
this subset. We chose as sample size the same size as the
one in the lower 15th percentile of the VCR. This is effectively
a null model that assumes that VCR is not an estimator of
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predictability. In other words, the null hypothesis establishes
that the mean RMSE observed in low VCR states is expected
to happen from any randomly chosen VCR state. Note that
our test statistic is the mean RMSE. Hence, the null distri-
bution is not the RMSE distribution, but the mean RMSEs
sampled from different VCR states. We repeated this
sampling process 104 times and we calculated their distri-
bution (grey curve in figure 3b) and a p-value as area under
the curve below the true RMSE (cyan line). The results of
the significance test at different thresholds of the VCR and
at different forecasting horizons are shown in electronic
supplementary material, figure S8.
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S1 Chaotic models used in the study455

For reproducibility purposes, here we list the chaotic dynamical systems used in this456

study. The model used in the main text is a 5-species chaotic consumer-resources model457
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with i = {1, 2} and ⌫1 = 0.1, ⌫2 = 0.07,�1 = 3.2,�2 = 2.9, C⇤
1 = C⇤

2 = 0.5, µ1 = µ2 =459

0.15,1 = 2.5,2 = 2, R⇤ = 0.3, k = 1.2. To generate Figure 1A we have perturbed460

⌫1 ! ⌫̃1 = 0.15. For the main analysis instead (i.e., Figure 1B) we perturbed a random461

number of parameters (sample from a uniform distribution U(3,number of parameters))462

with Gaussian noise N (0, parameter
Noise ) where Noise = U(1, 6) and U(1, 3) for small and large463

perturbation respectively.464

In Figure 1Cwe have repeated the same analysis we have shown in Figure 1B for di�erent465

chaotic models. Specifically, from left to right:466
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• Model 1 [36]:467
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with a = 0.3.468

• Model 2 [37]:469
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with a = 4, b = 9, c = 3.6, k = 4.470

• Model 3 [38] (chaotic Lotka-Volterra):471
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6666664

1 1.09 1.52 0

0 1 0.44 1.36

2.33 0 1 0.47

1.21 0.51 0.35 1

3

7777775
. (S5)
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S2 Statistical significance of the di�erence between means473

in the numerical simulations474

To test whether the di�erences between the mean errors at small and large VCR in Figures475

2A-B are statistically significant we ran a t-test. We found that all the results are significant476

with p-value⌧ 0.05.477

However, in numerical simulations, small p-values may be caused by large sample sizes.478

Therefore, to control for this e�ect, we ran the following analysis: first we fixed a forecast-479

ing horizon (e.g., 4 step ahead). Thenwe considered the results from thewhole simulation480

to be our population of errors at small and large VCR and we sample two random sam-481

ples of size n from the two populations (small and large VCR). Then, we computed the482

mean in the two samples and the significance of their di�erence with a t-test. If both the483

mean error at small VCR is smaller than the mean error at large VCR in this sample and484

the p-value of the t-test is less than 5%, then we assign a value of 1 (success) to the simu-485

lation. Otherwise, we assign a value of 0 (failure). Notice that the conditions for success486

are both hRMSEismallV < hRMSEilargeV and p� value < 5%. We repeated this simulation487

200 times and we computed the accuracy of the test. An accuracy of 1 means that every488

realization has passed the test, i.e., the means are di�erent. An accuracy of 0.5 means that489

half of the time the VCR would not have been a good estimator of predictability. Then,490

we repeated the experiment for every forecasting horizon and for di�erent sample sizes.491

Results are shown in Figure S4. The figure shows that at a small sample size, at both a492

very small forecasting horizon and a large forecasting horizon, the accuracy is low (still493

significantly greater than 0.5). Instead, at a medium forecasting horizon, the accuracy is494

greater than 90% for any sample size. Overall, this test shows that both the VCR is a re-495

liable measure of predictability in changing environments and the results in Figure 2 are496

robust to the choice of sample size.497

S3 Estimation of the volume contraction rate from empiri-498

cal data499

As discussed in the main text to compute the VCR we need to estimate the Jacobian co-500

e�cients non-parametrically from empirical data. To this end, we used the regularized501
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S-map[7, 12]. The regularized S-map is a locally weighted linear model with an elastic502

net regularization function—a convex mixture of L1 and L2 penalty terms [40, 41] intro-503

duced to stabilize the regression in the presence of noise. Specifically, for each point on504

the reconstructed manifold attractor (i.e., for each t⇤ 2 {1, . . . , n}with n number of obser-505

vations) we solved the following minimization problem:506

min
J2Rd⇥d

(Y �XJ )TK(X,X⇤, ✓)(Y �XJ ) + �(↵||J ||2
2
+ (1� ↵)||J ||1), (S6)

In Eq. (S6) J is the Jacobian matrix, and X is an (n� 1)⇥ d data matrix where the point507

removed from the data matrix is the target point ~x(t⇤). In addition, Y is the variable to508

be predicted (i.e., Y = Xt+1 8X 6= X⇤), K(X,X⇤, ✓) is a kernel function, and � and ↵ are509

two regularization parameters. From a preliminary analysis of the empirical time series,510

we have found that the best kernel function to use is the exponential kernel with diagonal511

elements:512

K(~x, ~x⇤, ✓) = e�✓ ||~x�~x⇤||
d̄ (S7)

Notice that because empirical data are seldom practically identifiable (i.e., the error land-513

scape around the solution of Eq. (S6) is typically flat) we actually compute the Jacobian514

coe�cients using a model average technique. That is, we create an ensembleM of models515

L with similar training and test errors and then we compute the weighted average of the516

parameters in the ensemble, i.e., the actual Jacobian matrix at time t is computed as:517

Jensemble(t) = E[J (t)|X] =
X

m2M

E[J (t)|Lm, X]P[Lm|X] 8t 2 [to, tf ]. (S8)

In Reference [25] it has been shown that this ensemble method increases the quality of the518

inference of the jacobian coe�cients.519

S4 Locally linear forecasts520

Because the empirical time series that we use are significantly shorter than the synthetic521

time series, herewe use the S-map for both estimating the average VCR and build a predic-522

tive model. Specifically, to make forecast we run the following analysis. The regularized523
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S-map provides m � 1 Jacobian coe�cients given that the last data point of the training524

set is not trained (i.e., we do not have information about them+ 1 point which is the first525

data in the test set). Therefore, we use the (m� 1)th coe�cient and themth data point to526

make predictions about the first data point in the test set (i.e., the (m + 1)th point in the527

time series). Predictions are made with a locally-linear model [43]:528

xi(t+ 1) = c0 +
X

j

Jij(t� 1)xj(t). (S9)

where xi is the i variable in the time series. The intercept is fitted adding a column of529

ones to the data matrix [44]. After each forecast, we use the predicted point to fit the530

mth interaction coe�cient, and we repeat the operation for as many times as numbers of531

data points we have in the test set. Note that the forecast is purely out-of-sample because532

this procedure never uses the original test set to select the model parameters or to make533

predictions.534

S5 Local Lyapunov exponents535

In nonlinear time series analysis literature, the Lyapunov exponents, which measure the536

growth rate of the distance between two infinitesimally close initial conditions, have been537

linked to the predictability of the dynamics in the presence of noise or uncertainty in the538

initial conditions [45, 46, 47]. However, it is unclear to what extent local measures of539

Lyapunov exponents (i.e., finite-time Lyapunov exponents computed for each time point540

along an attractor) are related to predictability under changing environments (i.e., param-541

eter perturbations). In this section, we want to test whether our results could have been542

obtained by simply using the largest local Lyapunov exponents as a measure of structural543

stability.544

To verify this, we computed the largest local Lyapunov exponent for models 1-3 described545

in section S1. Following standard approaches [48, 49] to compute the local Lyapunov ex-546

ponents, we integrated the tangent dynamics of the system d~y
dt = J ~y, where ~y is a small547

perturbation of the state vector ~x (i.e., a tangent vector) and J is the Jacobian matrix at548

state ~x. Then, we computed the largest Lyapunov exponent, �1, as the rate at which ~y549

shrinked or expanded after a small amount of time. For a d-dimensional system, esti-550

mating only the largest Lyapunov exponent, �1, is much more accurate than evolving d551
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tangent vectors together in order to estimate the whole spectrum of Lyapunov exponents552

(�1 > �2 > ... > �d) [48, 49].553

After computing the largest local Lyapunov exponent, �1, we reproduced the analysis554

used to generate Figure 1B but using �1 instead of the VCR. That is, for a given model,555

we integrated its dynamics and computed all Lyapunov exponents for each point in time.556

Then, we sampled one random point with a large �1 and one random point with a small557

�1 from the system’s trajectory based on the lower and upper 15th percentile of the �1558

distribution. Then, we perturbed a random number of parameters and integrated the559

dynamics again with the new perturbed parameters using the two sampled points on the560

attractor as initial conditions.561

Figure S2 is an exact replica of Figure 1B and Figure S1. By comparison of Figure S2 with562

these two Figures, we can clearly see that the shift of themass of the PDF andCDF towards563

negative values is more substantial when predictability is estimated using the VCR. We564

attribute this better performance to the fact that, as discussed in the main text, the VCR is565

a linear combination of the Lyapunov spectrumand, therefore, byweighting equally stable566

and unstablemanifolds it provides amore accurate probabilisticmeasure of predictability.567
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Fig. S1 | The VCR is a good estimator of local structural stability of non-equilibrium
dynamical systems. Here we repeat the same theoretical analysis discussed in the main
text (Figure 1B) using the models described in section S1, i.e., models 1-3 in the di�erent
rows of the figure. Overall, the figure provides further support to the hypothesis that
the VCR is a good proxy for the local structural stability of non-equilibrium dynamical
systems.
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Fig. S2 | The largest local Lyapunov exponent as estimator of the local structural stabil-
ity of non-equilibrium dynamical systems. Here we repeat the same theoretical analysis
discussed in themain text (Figure 1B) using themodels described in section S1 (i.e., mod-
els 1-3 in the di�erent rows of the figure), but using the largest Lyapunov exponent (�1)
instead of the VCR. Overall, the figure shows that using the largest local Lyapunov expo-
nent rather then the VCR as ameasure of local structural stability, wewould have obtained
qualitatively similar results. However, the shift of the mass of the PDF and CDF towards
negative values is sensibly more evident when predictability is estimated using the VCR,
Figure S1. Moreover, note that when working with empirical data, the VCR only requires
the estimation of the diagonal elements of the Jacobian matrix (d parameters), while the
Lyapnuov exponents require the whole matrix (d2 parameters), making the latter more
prone to errors [7, 25].
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C D

Fig. S3 | Robustness of the results in Figure 2. This Figure is an exact replica of Figure
2 but we have used a larger level of perturbation in the simulations (⌘ = 3). In Eq. (4),
Noise = U(1, 6) and U(1, 3) correspond to small (⌘ = 6) and large (⌘ = 3) perturbations,
respectively.
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Fig. S4 | Robustness of the results in Figure 2. The figure shows the statistical test dis-
cussed in Section S2. The x-axis is the sample size used to compute the mean of the sub-
population. The y-axis is the accuracy of the test, i.e., the percentage of times the mean
error at small and large VCR were statistically significantly di�erent. Overall the figure
shows that results are robust to the choice of the sample size in the simulations
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Fig. S5 | Numerical estimation of the VCR from noisy time series. Here we used the
regularized S-map to infer the Jacobian coe�cients of the dynamical system used in the
main text. Then we compute the trace of the inferred Jacobian and we compare it with the
trace of the analytical ones. For the inference we use a training set of 400 data points. The
observational noise on the time series, ✏, is normally distributed (left panel), uniformly
distributed (central panel) and sample from a gamma distribution (right panel). In the
Figure �(~x) is the standard deviation of the time series. For each distribution and each
level of noise the quality of the inference is computed over 100 realizations and the error
bar show the standard error of the mean. The figure illustrates that the inference of the
trace of the Jacobian matrix is consistently estimated even in the presence of observational
noise (notice that performance is measured in terms of Pearson’s correlation coe�cient as,
in order to sample points at low and high VCR we only care about the trend of the trace
of the Jacobian).
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Fig. S6 | Comparison of the performance of the S-map and the LSTM artificial neural
network as a function of the length of the training set. Performance is measured as the
median of the RMSE in the test set over 200 predictions of the population dynamics model
used in the main text. The error bars are computed with nonparametric bootstrapping.
The figure illustrates that for short training sets, the S-map outperforms the LSTMartificial
neural network. Thus, we have used the S-map to forecast the empirical time series. Notice
that the median naive error for this time series is ⇠ 1.2; hence, both algorithms perform
significantly better than naive forecasts even when trained over as little as 100 data points.
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Months Ahead RMSE at Small VCR RMSE at Large VCR p-value of t-test
1 0.260059 0.387251 0.006383
2 0.368196 0.511513 0.013863
3 0.451762 0.632516 0.008152
4 0.525750 0.740037 0.004753
5 0.588544 0.833653 0.002567

Fig. S7 T-test on the mean RMSE. The table shows the mean RMSE at small and large
VCR for the empirical time series. The last column shows the p-value of the t-test. The
table shows that the two means are indeed significantly di�erent.
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Fig. S8 | Significance test. The figure shows the p-value of the statistical significance of
the VCR as a measure of predictability (Figure 3B) as a function of the forecast horizon
at di�erent percentiles dividing small and large VCRs. Using (up to) the 30% percentile
of the distribution of the VCR as separation criterion between points with small and large
VCR, the VCR is a statistically significant measure of predictability.
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Fig. S9 | Distribution of the prediction error. The figure shows the distribution of the
prediction error (RMSE) in the test set at di�erent percentiles separatingwhatwe consider
to be a small and large VCRs. Similarly to Figure 3C, the two upper panels show the
di�erence in both mean and shape of the distributions of the error in the lower and upper
percentiles of the VCR. Notice that this di�erence would be lost if we were using a naive
50% as separation criterion between points at small and large VCRs (lower panel).
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Fig. S10 | Validity of the causality test. Here we show that the causality test provides
meaningful results (results that match intuitive expectations). The figure shows that, as
naturally expected, the VCR has no causal e�ect on either temperature nor mean wave
height, while the opposite is true (see Figure 3D in main text).
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