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A fundamental fact about mutualisms is that these mutually beneficial interactions 
often harbor cheaters that benefit from the use of resources and services without pro-
viding any positive feedback to other species. The role of cheaters in the evolution-
ary dynamics of mutualisms has long been recognized, yet their broader impacts at 
the community level, beyond species they directly interact with, is still poorly under-
stood. Because mutualisms form networks often involving dozens of species, indirect 
effects generated by cheaters may cascade through the whole community, reshaping 
trait evolution. Here, we study how cheating interactions can influence coevolution 
in mutualistic networks. We combined a coevolutionary model, empirical data on 
animal–plant mutualistic networks and numerical simulations to show that high trait 
disparity emerges as a consequence of the negative effect of cheaters on victim fitness, 
which in turn fuels selection favoring victim traits that are increasingly different from 
the cheaters’ traits. Intermediate levels of cheating interactions in a network can lead 
to the formation of groups of species phenotypically similar to each other and distinct 
from species in other groups, generating clustered trait patterns. The resulting clus-
tered trait pattern, in turn, changes the pattern of interaction in simulated networks, 
fostering the formation of modules of interacting species and reducing nestedness. Our 
results indicate that directional selection imposed by cheaters on their victims counter-
acts selection for trait convergence imposed by mutualists, leading to the emergence of 
modules of phenotypically similar interacting species but phenotypically distinct from 
other modules. Based on these results, we suggest that cheaters might be a fundamental 
missing element for our understanding of how multispecies selection shapes the trait 
distribution and structure of mutualistic networks.
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Introduction

Selection imposed by ecological interactions is one of the main 
forces impacting phenotypic patterns observed across levels of 
biological organization (Thompson 2005). Selection imposed 
by ecological interactions partially shapes trait matching 
among interacting individuals (Zhang et al. 2013), trait dis-
tributions within interacting populations (Bronstein  et  al. 
2003), trait variation across populations of the same species 
(Thompson 2005), and trait patterns at the community level 
(Strauss and Irwin 2004). At the community level, ecologi-
cal interactions can be a driving force of selection leading 
to trait convergence (Wilson et al. 2012) and trait disparity 
(Siepielski and Benkman 2010). In this sense, theoretical and 
empirical results indicate that distinct ecological interactions 
(e.g. mutualistic, antagonistic) may favor different trait out-
comes due to coevolution, i.e. the reciprocal evolutionary 
change between interacting species (Thompson 1994, Yoder 
and Nuismer 2010, Wechsler and Bascompte 2022).

Mutualistic interactions, for example, can favor trait 
matching (Thompson 2005), which is the trait similarity 
between interacting species, e.g. the size of the proboscis of 
a pollinator matching the depth of the flower it pollinates. 
Mutualisms may also generate other trait patterns, such as 
traits of extraordinary proportions when there is a coevolu-
tionary arms race (Anderson and Johnson 2008). However, 
trait matching is observed in a variety of mutualistic sys-
tems, such as pollination by flies and bees (Santamaría and 
Rodríguez-Gironés 2007, Zhang et al. 2013), seed dispersal 
by bats and birds (Mello et al. 2011, Galetti et al. 2013) and 
Müllerian rings in velvet ants (Wilson et al. 2012). Hence, 
trait matching is an expected outcome of reciprocal selection 
that may favor higher interaction efficiency in mutualisms 
(Thompson 1994, Zhang  et  al. 2013). In contrast, under 
antagonistic interactions, such as among parasites and their 
hosts, higher similarity between parasite and host traits leads 
to a higher fitness to the parasite and lower fitness to the host, 
while trait mismatching leads to a higher fitness to the host 
but a lower fitness to the parasite. In fact, antagonisms may 
lead to coevolutionary dynamics such as alternation and esca-
lation (Nuismer et al. 1999), which can result in the mainte-
nance or increase in trait variation within and across species 
(Thompson 2005, Andreazzi et al. 2017).

Antagonisms and mutualisms are not isolated in nature, in 
fact, they can coexist in many ways. Studies have explored the 
effects of combining mutualisms and antagonisms on popu-
lation dynamics (Melián  et  al. 2009), community stability 
(Wilson  et  al. 2003) and network structure (Genini  et  al. 
2010). In some cases, individuals of the same species can be 
antagonistic or mutualistic partners of the same interacting 
species, e.g. seed-caching rodents can be either seed preda-
tors, or seed dispersers of the same plant species (Loayza et al. 
2014). In other cases, individuals may act as antagonists of 
some species and as mutualists of others (Gómez et al. 2014, 
2018, Montesinos-Navarro  et  al. 2017). Finally, there are 
species that are specialized cheaters, exploiting mutualistic 
interactions without providing any benefit in return, like 

some fig wasps (Bronstein 2001). Thus, selection may favor 
the evolution of life histories that exploit the resources and 
services provided by mutualistic partners without giving back 
any benefits, creating cheating interactions (Bronstein 2001, 
Vieira et al. 2003).

The theory on how cheating interactions may affect evo-
lution in mutualisms is growing (Wechsler and Bascompte 
2022), especially when considering how multiple interac-
tions could fuel different coevolutionary outcomes with dis-
tinct local adaptations. For example, the interaction between 
the plant Lithophragma parviflorum and the floral-parasitic 
moth Greya politella changes from parasitism to mutualism if 
the other pollinators of L. parviflorum are absent in the com-
munity, affecting the coevolutionary dynamics of both spe-
cies (Thompson and Cunningham 2002). By exploring the 
role of cheaters in three-species systems, we progressed in our 
understanding on how cheaters may fuel novel evolutionary 
dynamics (Anderson 2005). A next step in our understand-
ing of the importance of cheaters in mutualisms is to explore 
what are the evolutionary roles that cheaters play in species-
rich communities. In species-rich communities, networks 
generate pathways connecting species that do not interact 
directly with each other, allowing evolutionary cascades to 
affect how species traits evolve (Guimarães et al. 2017). Yet, 
the impact of cheating interactions at the community level, 
beyond their impact on the species they directly interact 
with, is still poorly understood.

Here, we combine a single trait coevolutionary model, 
empirical networks of species interactions and numerical sim-
ulations to investigate how cheating interactions may affect 
coevolution in mutualistic networks (Fig. 1a). Specifically, 
we explore two main questions: 1) how does the frequency 
of cheating interactions affect coevolutionary dynamics? 
Because arms race dynamics are favored by directional antag-
onistic selection, we expect a higher trait mismatch in sce-
narios with elevated frequencies of cheating interactions. 2) 
what is the effect of cheating interactions on the structure of 
mutualistic networks? By assuming that cheating interactions 
may favor arms race dynamics, we expect higher trait dispar-
ity fueled by the presence of cheaters. Assuming that trait 
matching is essential for interactions to occur, higher trait 
disparity will result in a sparse network in which we observe 
less interactions compared to a community without cheaters. 
By disrupting interactions, trait disparity may generate clus-
ters of species with similar traits, leading to a disruption of 
nestedness and the emergence of modularity (Fig. 1b).

Methods

Evolutionary model

Our discrete-time, evolutionary model describes how the 
average trait of a species i, Zi, evolves due to reciprocal selec-
tion imposed by ecological interactions and other environ-
mental factors (e.g. abiotic conditions). In our model, the 
selection differential, S, and the additive genetic variance 
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Figure 1. Interplay between mutualism and cheating interactions may drive the coevolutionary process in mutualistic networks. (a) Using 
a network of interactions (squares are animals and circles are plants), we define two types of interactions between species i and j: mutualism 
with positive effects and cheating as positive and negative effects together. Then, we simulate how the species mean trait value Z changes in 
time due to coevolution, as shown in the central plot. The simulations run based on the selection differentials shown in the graphs where 
mutualisms will favor trait matching for both i and j species (left plot) and cheating interactions will favor trait matching for the cheater j 
(left plot) and trait mismatch for the victim i (right plot). (b) We show our expectations for 1) trait matching and 2) network structure 
considering the frequency of cheating interactions. We test these predictions with numerical simulations using a trait-based coevolution 
model and empirical mutualistic matrices of interactions.
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of the trait govern trait change across generations (Lande 
1976). We assume that species abundances are at equilibrium 
and there is no ecological feedback in trait evolution. Having 
said that, we show that variation in abundances across spe-
cies in a network does not qualitatively change the results we 
report here (Supporting information). We assume that S has 
three components potentially affecting the evolution of the 
trait Zi: the selection imposed by 1) mutualisms, 2) cheat-
ing interactions and 3) an environmental factor (Supporting 
information). As a first approximation, we assume that, for 
a given interaction, species are either mutualistic partners or 
cheaters, but the same species i may behave as a cheater for 
species j but as a mutualistic partner to species k. A given 
species i may have multiple interactions and each interaction 
may contribute differently to selection, where the contribu-
tion of species j to selection on species i is described by qij. 
Thus, qij represents the evolutionary effect between i and j 
and depends on the trait matching between these species as 
explained below.

The mutualism component, Smi
 is defined as the sum of 

selection effects caused by all mutualistic partners. Because 
exploiting victims also lead to fitness benefits to a given spe-
cies, we added the selection effects imposed by the victims 
of species i on Smi

. We assume that selection imposed by 
mutualism and from victims favors trait matching and we 
also assume that perfect trait matching between species i and 
j occurs if |Zj − Zi| = 0 (Guimarães  et  al. 2011). Thus, the 
total contribution of mutualistic interactions and exploita-
tion of victims to selection on Zi at time t is defined as:

S q Z Zm ij
t

j
t

i
t

j a

N

i
ij

= -( )( ) ( ) ( )
= =å 1 1,

	  (1)

where N is the total number of species in the community, 
aij is an element of the adjacency matrix A, qij

t( )  is the con-
tribution of partner j to selection on species i at time t and 
Zi

t( )  is the mean trait of species i at time t. Elements in A, 
aij, can be either 0 if there is no interaction between species 
i and j, or 1 if species j is a mutualistic partner or a vic-
tim of species i, or −1 if species j is a cheater. The summa-
tion condition (j = 1, aij = 1) ensures that the sum runs only 
over species that have mutualistic interactions with i or are 
exploited by i.

In the cheating component Sai
, selection favors trait mis-

match for the victim species i, defined as the species exploited 
by the cheater. The contribution of a cheater j for the selec-
tion on species i is given by qij

t( ) . Thus, selection for trait 
mismatching of cheater j on victim i is given by:
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where the summation condition (j = 1, aij = −1) represents a 
sum only over species that are cheaters of i and gij

t( )  is a func-
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where Ɛij represents a trait barrier (Santamaría and Rodríguez-
Gironés 2007), preventing the antagonistic effects of the 
interaction to impose selective pressures on the victim. That 
is, we assume that if the trait difference between i and j is 
higher than or equal to Ɛij, then the cheater species imposes 
no selection on the victim, but the victim still imposes a posi-
tive effect on the cheater. This outcome resembles a commen-
salistic interaction with no effect for one of the individuals 
and a positive effect for the other individual. However, if trait 
difference between i and j is smaller than Ɛij, selection on vic-
tim i will favor the increase or decrease of trait values depend-
ing on Zj

(t) − Zi
(t). Finally, we assume that the environmental 

component Sei
 is the combined effects of all other selective 

pressures, which favor an optimum environmental trait value 
for each species, θi:

S Ze i i
t

i
= - ( )q 	  (4)

Combining the three selection components described above 
(Eq. 1, 2 and 4), the evolutionary change of Zi from time t 
to t + 1 is given by:

Z Z S S Si
t

i
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û

1 1j g g 	  (5)

in which φi (φi > 0) is a compound parameter formed by 
additive genetic variance ( sGz

2 ) and a scaling constant affect-
ing the adaptive landscape ρi, which will result in a scaling 
factor j r si i Gz

= 2  (Guimarães et al. 2017), and the S terms 
are the selection differentials. The parameter γi (0 ≤ γi ≤ 1) 
dictates the importance of ecological interactions versus envi-
ronmental factors as selective pressures. Both φi and γi assume 
a single value in our simulations (Table 1) and sensitivity 
analysis show that these parameters do not qualitatively affect 
the overall patterns reported here (Supporting information).

The evolutionary effect qij
t( )  that affects the magnitude of 

trait change due to the mutualistic and cheating interactions 
is defined as the relative effect of species j on i:
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where the parameter α controls the sensitivity of the evo-
lutionary effect due to trait matching between species i 
and j where |aik| = 1 if there is a mutualistic or a cheating 
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interaction between i and k, and |aik| = 0, otherwise. The 
numerator of Eq. 6 is the evolutionary effect between spe-
cies i and j considering the trait difference between them, 
whereas the denominator is the sum of evolutionary effects 
of all species that interact with species i. Thus, qij is the nor-
malized evolutionary effect between i and j due to the trait 
difference between these species. The values and the descrip-
tion of the model parameters are depicted in Table 1 and the 
sensitivity analysis of the model parameters can be found in 
the Supporting information.

Mutualistic networks

We use 24 empirical mutualistic networks available at the 
databases Web of Life (www.web-of-life.es/) and Interaction 
Web Database (http://ecologia.ib.usp.br/iwdb/index.html). 
These 24 networks include eight plant–pollinator networks, 
eight plant–frugivore networks and eight ant–myrmecophyte 
networks. Each network is represented by an adjacency matrix 
(A) in which each species is represented by a single row and 
a single column of the matrix; each element of this matrix 
represents the presence (aij = 1, aij = −1) or absence (aij = 0) 
of the corresponding animal–plant interaction (Supporting 
information). Ant–myrmecophyte networks are commonly 
less connected, more modular and less nested in compari-
son to seed dispersal and pollination networks, while seed 
dispersal networks are usually more nested and have a higher 
connectance than pollination and ant–myrmecophyte net-
works (Supporting information). We used these 24 networks 
to parametrize the network structure in our simulations. We 
emphasize that we did not have information if the recorded 
interactions are cheating interactions, therefore we only used 
the empirical information to parameterize the structure of 
the mutualistic networks.

Simulations

Our simulations described how the mean trait Zi evolves in 
time (Fig. 1a). Each simulation started with the sampling 
of a single Zi value for each species and ended after at most 
1000 timesteps, which was enough time to generate asymp-
totic trait values. In most simulations, however, the equi-
librium was reached before 1000 timesteps. The simulation 
stopped when the condition of equilibrium, |Zi

(t+1) − Zi
(t)| 

< 10−4, was achieved for every species i in the network. We 

ran 48 000 simulations, 2000 per empirical network, where 
each simulation tracked how species traits changed in time 
due to coevolution and the selective pressures from the envi-
ronment (Fig. 1a). Initial trait values and parameter values 
used in our simulations are described in Table 1. All the 
simulations were performed in R ver. 3.5.3 (www.r-project.
org). In what follows, we explain how we used this model-
ing approach to explore our two questions. All the simula-
tion results are available at Zenodo under open access license 
(Camacho et al. 2022).

How does the frequency of cheating interactions affect 
coevolutionary dynamics?
We ran simulations with different frequencies of cheating 
interactions for each mutualistic network to evaluate the 
impact of cheaters on the coevolutionary process. In each 
simulation, we defined a probability p for an interaction 
within a ‘mutualistic network’ to be a cheating interaction 
(i.e., aij = −1) and (1 − p) the probability of an interaction to 
be a mutualistic interaction. We explored values of p ranging 
from 0.01 to 1 to test how different frequencies of cheating 
interactions affect trait evolution and network structure. We 
assumed that cheating interactions are randomly distributed 
across all interactions in the mutualistic network and that the 
frequency of cheating interactions in the network is fixed over 
a given simulation. We started with each pair of elements 
describing an interaction and each interaction coded as a 
mutualism, e.g., aij = aji = 1. Then, for each pairwise interac-
tion, we shift it to a cheating interaction with probability p. 
Because a cheating interaction is an interaction with a nega-
tive effect on one partner and a positive effect on the other 
one, we prohibited the occurrence of double-negative effects 
between two species (i.e., aij = aji = −1). Double-negative 
effects describe competitive-like interactions that are out of 
the scope of this paper.

To assign cheating interactions, we used the square adja-
cency matrix A, which has all the species in the rows and 
all the species in the columns (Supporting information). We 
sampled nonzero elements to transform from 1 to −1 and 
randomized whether species i or j will have its effect trans-
formed from positive to negative, allowing every species in 
the network the chance to have at least one of its interac-
tions changed from 1 to −1. Thus, both animals and plants 
could be cheaters and the identity of the cheaters could 
change between simulations because the process of sampling 

Table 1. Variables and parameters of the model and their baseline values.

Parameter Description Baseline values

Zi Initial mean trait value of species i (0 ≤ Zi ≤ 10)
φi Composed parameter formed by additive genetic variance and a scaling constant affecting the 

adaptive landscape, which will result in a single scaling factor
0.2 [0, 1]

Ɛij Trait barrier for the cheating interaction between species i and j 5
γi Strength of abiotic selection for trait change of species i 0.1 [0, 1]
θi Zi optimum value for the environmental selection (0 ≤ θi ≤ 10)
α Sensitivity of evolutionary effect due to the trait matching between interacting species 0.2
p Probability of a positive effect to become negative in a mutualistic network 0.01 ≤ p ≤ 1
b Trait barrier for any interaction to happen between species in the network 7
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elements were made before every simulation. The process of 
defining the outcome of interactions based on p generates a 
network with both positive and negative elements (i.e., aij = 1 
or aij = −1), merging the effect of mutualists and cheaters in 
a single network (Melián et al. 2009). We also assumed that 
the outcome of the interaction does not change over time. 
Although such an approach did not allow us to explore the 
effects of conditional outcomes of many interactions, it was 
a starting point to unravel how cheating interactions change 
the outcome of coevolution in mutualisms. We performed a 
set of sensitivity analyses where we relaxed this assumption 
by allowing interactions to shift from positive and negative 
outcomes during simulations. These analyses suggest that 
temporal variability on the interaction outcome does not 
influence our main results (Supporting information).

We characterized the outcome of coevolutionary dynam-
ics by describing patterns in trait distributions across species. 
We first measured the average trait distance between pairs 
of species as a proxy for trait disparity in the network. We 
computed the mean pairwise distance (D) as the sum of the 
Euclidean distances of species traits of all possible pairwise 
combinations between all species divided by the total number 
of pairwise combinations (Ciampaglio et al. 2001):

D
Z Z

N N
i

N

j i

N

i
t

j
t

=
-( )

-( )
å å ¹

( ) ( ) 2

1
	  (7)

Because antagonisms are expected to generate trait mismatch-
ing in networks (Andreazzi et al. 2017), whereas some mutual-
isms are expected to generate trait matching (Guimarães et al. 
2017), we performed an analysis to detect the number of trait 
clusters (i.e., groups of species with similar traits) following 
coevolutionary dynamics. By doing so, we measured how 
species traits can become different due to cheating or become 
similar due to mutualism. In this way, we could measure trait 
disparity (D) and the number of trait clusters in a single net-
work. To compute the number of trait clusters among inter-
acting species, we used Ward’s hierarchical clustering analysis 
(Ward 1963) along with the GAP validation index (following 
Tibshirani et al. 2001). Both algorithms organize trait values 
and create clusters which minimize intra-cluster variation, 
generating clusters of species with high trait similarity. We 
then explored how the frequency of cheating interactions in 
the network (p) affects the coevolutionary outcome (i.e., trait 
disparity or number of trait clusters).

We performed a sensitivity analysis to compare the results 
of our baseline simulations, where cheating interactions 
are randomly distributed across species with simulations in 
which highly connected, central species harbor most of the 
cheating interactions (Supporting information). The out-
comes of these analyses led to similar results, suggesting the 
lack of a strong effect of the distribution of cheating interac-
tions across species in shaping the network-level patterns of 
trait distributions (Supporting information).

What is the effect of cheating interactions on the structure of 
mutualistic networks?
In our baseline coevolutionary model, the trait barrier Ɛij 
indicates whether the evolutionary effects of a cheater spe-
cies on a victim becomes negligible. To explore the effect of 
cheating interactions on the network structure, we changed 
our baseline coevolutionary model to add an additional trait 
barrier, bij, defining the maximum absolute trait mismatch 
between two species traits so the species can interact. If 

Z Z bi
t

j
t

ij
( ) ( )- > , then aij is set to 0. While Z Z bi

t
j
t

ij
( ) ( )- £ ,  

aij remains at its original value of −1 or 1.
Note that Ɛij from Eq. 3 represents a trait barrier that dic-

tates if there is a selection on a victim by a cheater species. In 
contrast, bij describes that a potential mutualism or cheating 
interaction cannot occur because of a large trait dissimilar-
ity between partners. By incorporating bij in our model we 
explored how network structure changes through time as an 
outcome of the coevolutionary process. With this approach, 
at each time t in our simulations, we verified if there were 
interacting species with differences in trait values higher 
than bij and we disconnected those interactions generating 
an interaction loss. Because we focused on how the network 
changes due to interaction loss, once the interaction is lost, 
it remains lost and cannot reconnect during the simulations. 
Thus, at the end of a simulation, we may have an interac-
tion network with a different structure generated through the 
removal of links. We then compared the initial and final net-
work structure in each simulation. We performed a sensitivity 
analysis allowing the reconnection of interactions that led to 
qualitatively similar results (Supporting information).

We characterized the structure of each network by calcu-
lating two common measures of network structure: nested-
ness and modularity (Almeida-Neto et al. 2008, Blondel et al. 
2008). For each simulation, we computed the number of 
interactions lost, here called F. These interactions are lost 
due to the simulated coevolutionary dynamics as described 
in the previous paragraph. We computed measures based 
on nestedness and modularity describing structural changes 
between the final and initial network for each simulation. We 
used two measures of network structural changes: ΔNODF 
and ΔQ. For each network, these measures were calculated 
as the difference between the network nestedness (NODF, 
Almeida-Neto et al. 2008) and modularity (Q, Blondel et al. 
2008) at the end and at the beginning of the simulations. 
Thus, ΔNODF is defined as NODFfinal–NODFinitial and ΔQ 
is defined as Qfinal–Qinitial.

Thus, coevolutionary dynamics in our model may reduce 
the total number of interactions, favoring specialization. We 
then explored if the removal of interactions by coevolution-
ary dynamics deviates from random removal of interactions 
from the initial network. To do so, in addition to each initial 
and final network, we created a third network generated by 
randomly removing F interactions from the initial network. 
This network, therefore, has the same number of interac-
tions as the coevolved network but the set of interactions 
removed was randomly defined. Finally, we compared how 
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the network structure changes with therandom loss of inter-
actions and the loss of interactions due to trait dissimilarity 
from the coevolutionary dynamics.

Results

How does the frequency of cheating interactions affect 
coevolutionary dynamics?

We found that the higher the proportion of cheating interac-
tions, the higher the trait disparity observed across animal and 
plant species in the networks (Fig. 2a–c). This effect of cheating 

interactions is similar for the three types of mutualisms stud-
ied here (Table 2). Thus, cheating interactions increase trait 
disparity across species (Fig. 2), and this effect did not change 
among networks of different types of mutualism.

We observed that the frequency of cheating interactions 
affects the number of species trait clusters. At low levels of 
cheating interactions (p = 0.01, with p being the frequency 
of cheating interactions in the networks), we found a low 
number of clusters (2.37 ± 0.60, Fig. 2d–f ). At intermedi-
ate levels of cheating interactions, the number of trait clus-
ters increased (p = 0.5, 2.99 ± 0.79). Finally, if most of the 
network was formed by cheating interactions then, on aver-
age, we saw a slight decrease in the numbers of species trait 

Figure 2. How does the frequency of cheating interactions affect coevolutionary dynamics? Each point in the plot is the average value 
depicting the mean pairwise distance between all species in the network (D) and the number of species trait clusters in different frequencies 
of cheating interactions (p). Each error bar is the 0.05 and 0.95 quantile from our simulation results. Ant–myrmecophyte interactions are 
represented by the green plots, pollination by orange plots and seed dispersal interactions are represented by purple plots.
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Page 8 of 12

clusters with a more pronounced effect in ant–myrmecophyte 
networks (2.89 ± 0.50, p = 0.9, Fig. 2d–f ). Thus, increas-
ing the frequency of cheating interactions fuels trait dispar-
ity in mutualistic networks by promoting the emergence of 
trait clusters. However, under high frequencies of cheating 
interactions, several arms races happened at the same time 
and victim’s trait evolution inevitably increased trait match-
ing for one of their several cheater’s partners. Thus, trait 
disparity and the number of trait clusters decreased under a 
very high frequency of cheating interactions, mainly in ant–
myrmecophyte networks (Fig. 2d–f ). Running simulations 

incorporating species abundances does not qualitatively 
influence the patterns of high trait disparity and species trait 
clusters (Supporting information).

What is the effect of cheating interactions on the 
structure of mutualistic networks?

We found that when assuming p = 0 (no cheating interac-
tions), coevolutionary dynamics led to no qualitative change 
in the measured structural features of the network (ΔQ ≅ 
0; ΔNODF ≅ 0). In contrast, as we increase the frequency 
of cheating interactions, mutualistic networks become more 
modular and less nested (Fig. 3, Table 3). Despite the pat-
tern of increasing modularity and reduced nestedness being 
the same between simulation scenarios, the magnitude of 
increasing modularity and reduced nestedness observed was 
not reproduced by randomly removing interactions (col-
ored versus black points in Fig. 3). In other words, mutu-
alistic networks tend to become modular with interactions 
removal, but networks become more modular when consid-
ering interaction lost due to cheater coevolution than ran-
dom interaction lost.

Table 2. Average ± SD values of mean pairwise distance (D) and 
statistical fit of a linear model between D and frequency of cheating 
interactions in the networks for three types of mutualisms. D is the 
mean pairwise distance calculated as the sum of the Euclidean dis-
tances of species traits of all possible pairwise combinations divided 
by the total number of pairwise combinations between species traits 
from our numerical simulations.

Mutualisms Average D ± SD Slope R2

Ant–myrmecophyte (n = 8) 12.39 ± 6.72 19.56 0.70
Pollination (n = 8) 9.58 ± 5.92 17.31 0.75
Seed dispersal (n = 8) 8.55 ± 5.89 17.81  0.75

Figure 3. What is the effect of cheating interactions on the structure of mutualistic networks? Each point in the plot is the average value of 
ΔQ and ΔNODF in different frequencies of cheating interactions (p). Each error bar is 0.05 and 0.95 quantile from our simulation results. 
The black points are values of ΔQ and ΔNODF from networks where we removed interactions randomly. Ant–myrmecophyte interactions 
are represented by the green plots, pollination by orange plots and seed dispersal interactions are represented by purple plots. The matrices 
above the graphs are examples of binary adjacency matrices to compare the loss of interactions in simulations from different scenarios.
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The increase in modularity and reduction in nestedness 
was not equally distributed across mutualisms. In mutual-
isms where the empirical network was initially very modular 
and not nested (e.g. ant–myrmecophyte networks) changes 
in network structure were weaker than in mutualisms that 
initially showed higher nestedness (e.g. pollination and seed 
dispersal). Hence, in mutualistic networks containing a high 
frequency of cheating interactions, coevolution can enhance 
modularity and decrease nestedness (Table 3). Having said 
that, for networks composed of almost only cheaters, the lev-
els of modularity showed a small decline (Fig. 3). Sensitivity 
analysis taking into account variation in species abundances 
does not change qualitatively our results of simulated net-
works showing a higher trait disparity and modularity 
(Supporting information). Finally, considering species rewir-
ing during the simulations also did not change the main pat-
tern of increased modularity and reduced nestedness depicted 
in our results. Thus, even with species gaining new interac-
tions during simulations, the networks tend to become more 
modular and less nested (Supporting information).

Discussion

In this study, we explored the coevolutionary outcomes of 
cheating interactions in mutualistic networks. Our results 
showed that trait evolution and network structure can change 
due to cheating interactions that emerge in mutualistic sys-
tems. Previous studies have already explored the effect of 
mutualistic and cheating interactions on population dynam-
ics (Law et al. 2001, Bronstein et al. 2003, Wilson et al. 2003, 
Lee 2015) and phenotypic evolution (Ferriere et al. 2002). In 
this context, our work contributes to further understanding 
of the coevolutionary dynamics of multispecies assemblages 
in three different ways.

First, we showed that cheating interactions promoted 
higher community-level trait disparity in mutualistic net-
works. By imposing selection favoring trait mismatching, 
the presence of cheating interactions led to an increase in 
species trait disparity in mutualistic assemblages. The arms 
race dynamics promoted by cheaters partially offset selec-
tion favoring convergence and trait matching in mutual-
isms (Guimarães et al. 2011, Zhang et al. 2013). Therefore, 
cheating interactions may provide one of the mechanisms 
preventing the emergence of perfect trait matching in 
empirical mutualistic communities (Law  et  al. 2001). Yet, 
trait disparity cannot increase indefinitely due to factors 
related to the environmental pressures and distinct selection 
regimes (Andreazzi et al. 2017). For instance, limited genetic 

variation or limited anatomical and physiological mecha-
nisms restricts fruit sugar content and flower size (Jordano 
1995), which could limit the potential for trait change in 
time and, consequently, restrict trait matching. In addition, 
annual variation in soil nutrients limit the pulp composition 
of fleshy fruits and, consequently, represents a restriction for 
the development of sugar-rich fruits that are highly attrac-
tive to frugivores (Herrera 1998), limiting trait matching in 
plant–frugivore systems. Finally, the way species are orga-
nized in mutualistic networks can change the resulting trait 
matching or trait disparity of species. However, we explored 
the effects of cheater species centrality on trait coevolution 
and did not find a clear effect on either trait matching or 
disparity of species (Supporting information).

Second, we found that cheating interactions promoted, 
under intermediate frequencies, an increase in the number of 
trait clusters in mutualistic networks. Under intermediate fre-
quencies of cheating interactions, the joint effect of mutualis-
tic selection favoring trait matching and cheating interactions 
favoring trait mismatching created clusters of species traits. 
There is evidence that the proportion of positive and negative 
effects between species is similar in empirical communities 
(Dodds 1997). That is, communities have the equal propor-
tions of mutualistic and cheating interactions. Applying these 
empirical proportions to our results, equal proportions of 
cheating and mutualism interactions may generate a higher 
trait disparity due to the formation of trait clusters. This 
prediction can be tested by measuring the level of trait dis-
parity and the frequency of cheating interactions across dif-
ferent interacting assemblages. In high frequencies of cheating 
interactions there is a slight fall in the number of species trait 
cluster in ant–myrmecophyte networks. Ant–myrmecophyte 
networks are sparse, smaller and more modular than pollina-
tion and seed dispersal networks (Supporting information). 
In high frequency of cheaters, smaller and modular networks 
could diminish the potential for victims find mutualistic 
partners. Thus, the weaker formation of clusters observed in 
ant–myrmecophyte could happen due to the effect of cheater’s 
arms race in networks with low number of species.

It is noteworthy that the presence of cheaters may be 
underestimated in empirical networks (Genini et al. 2010), 
partially because there is great behavioral plasticity among 
interacting individuals (Bronstein 2001). Thus, behavioral 
plasticity generating intraspecific variation may play an 
important role in individual fitness and may lead to occa-
sional cheating. Also, it is important to point out that the 
patterns of higher trait disparity and cluster formation were 
observed at the network-level and not necessarily a single 
pairwise interaction will have higher trait disparity in this 

Table 3. Average ± SD ΔQ and ΔNODF for random interaction removal and trait barrier interaction removal for three types of mutualisms. 
The average and SD value of ΔQ and ΔNODF were calculated using all the simulations (ranging from p = 0.01 to p = 1).

Mutualisms
ΔQ ± SD ΔNODF ± SD

Random Simulations Random Simulations

Ant–myrmecophyte (n = 8) 0.0063 ± 0.04 0.035 ± 0.053 −1.89 ± 2.74 −2.8 ± 3.3
Pollination (n = 8) 0.060 ± 0.075 0.12 ± 0.11 −15.26 ± 13.87 −18.22 ± 15.2
Seed dispersal (n = 8) 0.093 ± 0.085 0.16 ± 0.14 −22.53 ± 17.48 −24.62 ± 18.92
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context. It is possible that for a single pairwise interaction 
the cheater and victim may have an increase in trait matching 
but since other interacting victims could be favoring extreme 
trait values due to cheaters interactions, the result, at the 
network level, might be a higher trait disparity. Finally, we 
observed the growth of trait disparity in our simulations but 
we emphasize that the conflicting selection from cheater and 
mutualism and environment selection imposes a limit to this 
growth of trait disparity.

Third, we showed that the presence of cheating interac-
tions in mutualistic networks led to the reorganization of 
network patterns due to the increased trait dissimilarity. In 
particular, we found that cheating led to increased modu-
larity and reduced nestedness in mutualistic networks. The 
emergence of modularity was also observed as an outcome of 
coevolutionary dynamics in antagonistic networks depend-
ing on the selection intensity between victim and exploiter 
species (Andreazzi et al. 2017). Our results propose an alter-
native path to the emergence of modularity in mutualistic 
networks, which depends on how many cheating interactions 
the mutualistic network contains. The structure of interaction 
networks can be explained by several factors, such as species 
abundance distribution (Dáttilo et al. 2014), differences in 
species richness between species sets (Guimarães et al. 2007), 
match and mismatch between traits of plants and animals 
(Stang et al. 2007), phylogenetic and phenology-based con-
straints (Jordano 1995, Jordano et al. 2003) and ecological 
niche adaptation (Cai et al. 2020). Here we have shown that 
cheating interactions can also change the structure of mutu-
alistic networks through the coevolutionary process. Cai and 
collaborators (2020) showed that, in mutualistic networks 
showing simultaneously modularity and nestedness, both 
structures can change the robustness of the network when 
facing either invasion or extinction. Future studies could test 
the influence of cheating interactions on network robustness 
due to the re-organization of modularity and nestedness.

Overall, our results suggest that the incorporation of the 
selection imposed by cheating interactions that naturally 
emerge from mutualisms is pivotal to a deep understanding 
of the coevolutionary dynamics in species-rich mutualisms. 
Cheating interactions changed the outcomes of mutualistic 
coevolution, leading to increased interspecific trait variation 
and clustering. We provided insights on the effect of multi-
ple interaction types in a network and how it may shape trait 
diversity by the contrasting selective forces favoring conver-
gence and disparity across interacting species (Sauve  et  al. 
2016). The structure of simulated networks significantly 
changed when we increased the frequency of cheating inter-
actions, and this result opens new questions on what is the 
balance of positive and negative effects that maintains the 
structure of empirical networks. There is theoretical evi-
dence showing that nestedness can, in part, increase network 
robustness to species extinction and invasions (Lever et al. 
2014) but also modularity can moderately increase network 
stability (Stouffer and Bascompte 2011, Grilli et al. 2016). 
Also, theoretical and empirical evidence shows that the iden-
tity and type of interactions change over time, consequently 

changing the robustness of the network (Montesinos-
Navarro et al. 2017, Ponisio et al. 2017, Baruah 2022). If 
so, different interaction types or the initial loss of nested-
ness with higher frequencies of cheaters that we observed 
could impact the robustness of communities, impacting 
ecosystem functioning and services. Here, we contributed 
to understanding by which factors and how the structure of 
mutualistic networks may change. Our theoretical predic-
tions may also help us to understand how networks might 
evolve under a rapidly changing world, creating modularity 
and nestedness depending on, for instance, historical factors 
(Dalsgaard  et  al. 2013). All in all, our work suggests that 
interaction changes may have important consequences for 
trait evolution and, consequently, for the reorganization of 
network structure in multispecies mutualistic systems.
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